Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 34(7): 1205-1211, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37399501

RESUMEN

We present the first in vivo comparative evaluation of chemically defined antibody-drug conjugates (ADCs), small molecule-drug conjugates (SMDCs), and peptide-drug conjugates (PDCs) targeting and activated by fibroblast activation protein (FAP) in solid tumors. Both the SMDC (OncoFAP-Gly-Pro-MMAE) and the ADC (7NP2-Gly-Pro-MMAE) candidates delivered high amounts of active payload (i.e., MMAE) selectively at the tumor site, thus producing a potent antitumor activity in a preclinical cancer model.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Fibroblastos , Oligopéptidos , Péptidos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Immunother Cancer ; 12(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142716

RESUMEN

BACKGROUND: Anti-PD-1 antibodies have revolutionized cancer immunotherapy due to their ability to induce long-lasting complete remissions in a proportion of patients. Current research efforts are attempting to identify biomarkers and suitable combination partners to predict or further improve the activity of immune checkpoint inhibitors. Antibody-cytokine fusions are a class of pharmaceuticals that showed the potential to boost the anticancer properties of other immunotherapies. Extradomain A-fibronectin (EDA-FN), which is expressed in most solid and hematological tumors but is virtually undetectable in healthy adult tissues, is an attractive target for the delivery of cytokine at the site of the disease. METHODS: In this work, we describe the generation and characterization of a novel interleukin-7-based fusion protein targeting EDA-FN termed F8(scDb)-IL7. The product consists of the F8 antibody specific to the alternatively spliced EDA of FN in the single-chain diabody (scDb) format fused to human IL-7. RESULTS: F8(scDb)-IL7 efficiently stimulates human peripheral blood mononuclear cells in vitro. Moreover, the product significantly increases the expression of T Cell Factor 1 (TCF-1) on CD8+T cells compared with an IL2-fusion protein. TCF-1 has emerged as a pivotal transcription factor that influences the durability and potency of immune responses against tumors. In preclinical cancer models, F8(scDb)-IL7 demonstrates potent single-agent activity and eradicates sarcoma lesions when combined with anti-PD-1. CONCLUSIONS: Our results provide the rationale to explore the combination of F8(scDb)-IL7 with anti-PD-1 antibodies for the treatment of patients with cancer.


Asunto(s)
Linfocitos T CD8-positivos , Fibronectinas , Interleucina-7 , Humanos , Fibronectinas/metabolismo , Fibronectinas/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Interleucina-7/metabolismo , Interleucina-7/farmacología , Animales , Ratones , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Regulación hacia Arriba , Femenino , Línea Celular Tumoral
3.
EMBO Mol Med ; 16(4): 904-926, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448543

RESUMEN

Cytokine-based therapeutics have been shown to mediate objective responses in certain tumor entities but suffer from insufficient selectivity, causing limiting toxicity which prevents dose escalation to therapeutically active regimens. The antibody-based delivery of cytokines significantly increases the therapeutic index of the corresponding payload but still suffers from side effects associated with peak concentrations of the product in blood upon intravenous administration. Here we devise a general strategy (named "Intra-Cork") to mask systemic cytokine activity without impacting anti-cancer efficacy. Our technology features the use of antibody-cytokine fusions, capable of selective localization at the neoplastic site, in combination with pathway-selective inhibitors of the cytokine signaling, which rapidly clear from the body. This strategy, exemplified with a tumor-targeted IL12 in combination with a JAK2 inhibitor, allowed to abrogate cytokine-driven toxicity without affecting therapeutic activity in a preclinical model of cancer. This approach is readily applicable in clinical practice.


Asunto(s)
Citocinas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoterapia
4.
Front Pharmacol ; 14: 1320524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125888

RESUMEN

Immune-stimulating antibody conjugates (ISACs) equipped with imidazoquinoline (IMD) payloads can stimulate endogenous immune cells to kill cancer cells, ultimately inducing long-lasting anticancer effects. A novel ISAC was designed, featuring the IMD Resiquimod (R848), a tumor-targeting antibody specific for Carbonic Anhydrase IX (CAIX) and the protease-cleavable Val-Cit-PABC linker. In vitro stability analysis showed not only R848 release in the presence of the protease Cathepsin B but also under acidic conditions. The ex vivo mass spectrometry-based biodistribution data confirmed the low stability of the linker-drug connection while highlighting the selective accumulation of the IgG in tumors and its long circulatory half-life.

5.
Sci Transl Med ; 15(697): eadf2281, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224228

RESUMEN

Glioblastoma is the most aggressive primary brain tumor with an unmet need for more effective therapies. Here, we investigated combination therapies based on L19TNF, an antibody-cytokine fusion protein based on tumor necrosis factor that selectively localizes to cancer neovasculature. Using immunocompetent orthotopic glioma mouse models, we identified strong anti-glioma activity of L19TNF in combination with the alkylating agent CCNU, which cured the majority of tumor-bearing mice, whereas monotherapies only had limited efficacy. In situ and ex vivo immunophenotypic and molecular profiling in the mouse models revealed that L19TNF and CCNU induced tumor DNA damage and treatment-associated tumor necrosis. In addition, this combination also up-regulated tumor endothelial cell adhesion molecules, promoted the infiltration of immune cells into the tumor, induced immunostimulatory pathways, and decreased immunosuppression pathways. MHC immunopeptidomics demonstrated that L19TNF and CCNU increased antigen presentation on MHC class I molecules. The antitumor activity was T cell dependent and completely abrogated in immunodeficient mouse models. On the basis of these encouraging results, we translated this treatment combination to patients with glioblastoma. The clinical translation is ongoing but already shows objective responses in three of five patients in the first recurrent glioblastoma patient cohort treated with L19TNF in combination with CCNU (NCT04573192).


Asunto(s)
Glioblastoma , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Linfocitos T , Recurrencia Local de Neoplasia , Factor de Necrosis Tumoral alfa , Modelos Animales de Enfermedad , Lomustina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA