Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(2): 46, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38332254

RESUMEN

KEY MESSAGE: Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential. The amount of free asparagine in grain of a wheat genotype determines its potential to form harmful acrylamide in derivative food products. Here, we explored the variation in the free asparagine, aspartate, glutamine and glutamate contents of 485 accessions reflecting wheat worldwide diversity to define the genetic architecture governing the accumulation of these amino acids in grain. Accessions were grown under high and low nitrogen availability and in water-deficient and well-watered conditions, and plant and grain phenotypes were measured. Free amino acid contents of grain varied from 0.01 to 1.02 mg g-1 among genotypes in a highly heritable way that did not correlate strongly with grain yield, protein content, specific weight, thousand-kernel weight or heading date. Mean free asparagine content was 4% higher under high nitrogen and 3% higher in water-deficient conditions. After genotyping the accessions, single-locus and multi-locus genome-wide association study models were used to identify several QTLs for free asparagine content located on nine chromosomes. Each QTL was associated with a single amino acid and growing environment, and none of the QTLs colocalised with genes known to be involved in the corresponding amino acid metabolism. This suggests that free asparagine content is controlled by several loci with minor effects interacting with the environment. We conclude that breeding for reduced asparagine content is feasible, but should be firmly based on multi-environment field trials. KEY MESSAGE: Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential.


Asunto(s)
Asparagina , Triticum , Triticum/metabolismo , Estudio de Asociación del Genoma Completo , Nitrógeno/metabolismo , Fitomejoramiento , Grano Comestible/genética , Grano Comestible/metabolismo , Aminoácidos/metabolismo , Fenotipo , Acrilamidas/metabolismo
2.
J Exp Bot ; 74(11): 3276-3285, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946623

RESUMEN

Improving and stabilizing the quality of seed proteins are of growing interest in the current food and agroecological transitions. Sulfur is a key determinant of this quality since it is essential for the synthesis of sulfur-rich proteins in seeds. A lack of sulfur provokes drastic changes in seed protein composition, negatively impacting the nutritional and functional properties of proteins, and leading in some cases to diseases or health problems in humans. Sulfur also plays a crucial role in stress tolerance through the synthesis of antioxidant or protective molecules. In the context of climate change, questions arise regarding the trade-off between seed yield and seed quality with respect to sulfur availability and use by crops that represent important sources of proteins for human nutrition. Here, we review recent work obtained in legumes, cereals, as well as in Arabidopsis, that present major advances on: (i) the interaction between sulfur nutrition and environmental or nutritional stresses with regard to seed yield and protein composition; (ii) metabolic pathways that merit to be targeted to mitigate negative impacts of environmental stresses on seed protein quality; and (iii) the importance of sulfur homeostasis for the regulation of seed protein composition and its interplay with seed redox homeostasis.


Asunto(s)
Arabidopsis , Semillas , Humanos , Semillas/metabolismo , Grano Comestible/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Azufre/metabolismo , Estrés Fisiológico
3.
Plant Physiol ; 183(2): 501-516, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32295821

RESUMEN

Understanding the molecular mechanisms controlling the accumulation of grain storage proteins in response to nitrogen (N) and sulfur (S) nutrition is essential to improve cereal grain nutritional and functional properties. Here, we studied the grain transcriptome and metabolome responses to postanthesis N and S supply for the diploid wheat einkorn (Triticum monococcum). During grain filling, 848 transcripts and 24 metabolites were differentially accumulated in response to N and S availability. The accumulation of total free amino acids per grain and the expression levels of 241 genes showed significant modifications during most of the grain filling period and were upregulated in response to S deficiency. Among them, 24 transcripts strongly responded to S deficiency and were identified in coexpression network analyses as potential coordinators of the grain response to N and S supply. Sulfate transporters and genes involved in sulfate and Met metabolism were upregulated, suggesting regulation of the pool of free amino acids and of the grain N-to-S ratio. Several genes highlighted in this study might limit the impact of S deficiency on the accumulation of grain storage proteins.


Asunto(s)
Azufre/deficiencia , Triticum/metabolismo , Diploidia , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Granos/metabolismo , Proteínas de Plantas/metabolismo , Azufre/metabolismo
4.
Plant J ; 97(5): 858-871, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30444293

RESUMEN

The quality of wheat grain is mainly determined by the quantity and composition of its grain storage proteins (GSPs). Grain storage proteins consist of low- and high-molecular-weight glutenins (LMW-GS and HMW-GS, respectively) and gliadins. The synthesis of these proteins is essentially regulated at the transcriptional level and by the availability of nitrogen and sulfur. The regulation network has been extensively studied in barley where BLZ1 and BLZ2, members of the basic leucine zipper (bZIP) family, activate the synthesis of hordeins. To date, in wheat, only the ortholog of BLZ2, Storage Protein Activator (SPA), has been identified as playing a major role in the regulation of GSP synthesis. Here, the ortholog of BLZ1, named SPA Heterodimerizing Protein (SHP), was identified and its involvement in the transcriptional regulation of the genes coding for GSPs was analyzed. In gel mobility shift assays, SHP binds cis-motifs known to bind to bZIP family transcription factors in HMW-GS and LMW-GS promoters. Moreover, we showed by transient expression assays in wheat endosperm that SHP acts as a repressor of the activity of these gene promoters. This result was confirmed in transgenic lines overexpressing SHP, which were grown with low and high nitrogen supply. The phenotype of SHP-overexpressing lines showed a lower quantity of both LMW-GS and HMW-GS, while the quantity of gliadin was unchanged, whatever the nitrogen availability. Thus, the gliadin/glutenin ratio was increased, which suggests that gliadin and glutenin genes may be differently regulated.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Glútenes/metabolismo , Proteínas de Plantas/metabolismo , Triticum/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Glútenes/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Multimerización de Proteína , Triticum/metabolismo
5.
Theor Appl Genet ; 133(3): 751-770, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31907562

RESUMEN

KEY MESSAGE: A set of eight SNP markers was developed to facilitate the early selection of HMW-GS alleles in breeding programmes. In bread wheat (Triticum aestivum), the high molecular weight glutenin subunits (HMW-GSs) are the most important determinants of technological quality. Known to be very diverse, HMW-GSs are encoded by the tightly linked genes Glu-1-1 and Glu-1-2. Alleles that improve the quality of dough have been identified. Up to now, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of grain proteins is the most widely used for their identification. To facilitate the early selection of HMW-GS alleles in breeding programmes, we developed DNA-based molecular markers. For each accession of a core collection (n = 364 lines) representative of worldwide bread wheat diversity, HMW-GSs were characterized by both genotyping and SDS-PAGE. Based on electrophoresis, we observed at least 8, 22 and 9 different alleles at the Glu-A1, Glu-B1 and Glu-D1 loci, respectively, including new variants. We designed a set of 17 single-nucleotide polymorphism (SNP) markers that were representative of the most frequent SDS-PAGE alleles at each locus. At Glu-A1 and Glu-D1, two and three marker-based haplotypes, respectively, captured the diversity of the SDS-PAGE alleles rather well. Discrepancies were found mainly for the Glu-B1 locus. However, statistical tests revealed that two markers at each Glu-B1 gene and their corresponding haplotypes were more significantly associated with the rheological properties of the dough than were the relevant SDS-PAGE alleles. To conclude, this study demonstrates that the SNP markers developed provide additional information on HMW-GS diversity. Two markers at Glu-A1, four at Glu-B1 and two at Glu-D1 constitute a useful toolbox for breeding wheat to improve end-use value.


Asunto(s)
Glútenes/genética , Glútenes/metabolismo , Fitomejoramiento/métodos , Triticum/genética , Alelos , Electroforesis en Gel de Poliacrilamida , Genes de Plantas , Marcadores Genéticos , Haplotipos , Peso Molecular , Polimorfismo de Nucleótido Simple , Triticum/metabolismo
6.
Mol Biol Rep ; 47(7): 5439-5449, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32627139

RESUMEN

Grain development of Triticum aestivum is being studied extensively using individual OMICS tools. However, integrated transcriptome and proteome studies are limited mainly due to complexity of genome. Current study focused to unravel the transcriptome-proteome coordination of key mechanisms underlying carbohydrate metabolism during whole wheat grain development. Wheat grains were manually dissected to obtain grain tissues for proteomics and transcriptomics analyses. Differentially expressed proteins and transcripts at the 11 stages of grain development were compared. Computational workflow for integration of two datasets related to carbohydrate metabolism was designed. For CM proteins, output peptide sequences of proteomic analyses (via LC-MS/MS) were used as source to search corresponding transcripts. The transcript that turned out with higher number of peptides was selected as bona fide ribonucleotide sequence for respective protein synthesis. More than 90% of hits resulted in successful identification of respective transcripts. Comparative analysis of protein and transcript expression profiles resulted in overall 32% concordance between these two series of data. However, during grain development correlation of two datasets gradually increased up to ~ tenfold from 152 to 655 °Cd and then dropped down. Proteins involved in carbohydrate metabolism were divided in five categories in accordance with their functions. Enzymes involved in starch and sucrose biosynthesis showed the highest correlations between proteome-transcriptome profiles. High percentage of identification and validation of protein-transcript hits highlighted the power of omics data integration approach over existing gene functional annotation tools. We found that correlation of two datasets is highly influenced by stage of grain development. Further, gene regulatory networks would be helpful in unraveling the mechanisms underlying the complex and significant traits such as grain weight and yield.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Triticum/genética , Triticum/metabolismo , Carbohidratos/genética , Cromatografía Liquida/métodos , Grano Comestible/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteoma/genética , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Transcriptoma/genética
7.
Br J Nutr ; 122(2): 231-239, 2019 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-31232248

RESUMEN

The number of people avoiding gluten is growing in many Western countries. However, little information is available on their sociodemographic and dietary profiles. We aimed to describe sociodemographic, behavioural and dietary profiles of participants avoiding gluten in the NutriNet-Santé cohort. Participants of the NutriNet-Santé cohort - excluding coeliac patients - who completed a questionnaire about food exclusions, with complete data on sociodemographic characteristics and dietary intake were included (n 20 456). Food group consumptions and nutrient intakes according to self-reported avoidance of gluten were estimated using ANCOVA adjusted for age, sex and daily energy intake. Based on principal component analysis, three dietary patterns (DP) were identified. Association between DP and avoidance of gluten was investigated using multivariate logistic regression. All data were weighted on the French census. A total of 10·31 (95 % CI 9·90, 10·73) % of the participants declared avoiding gluten, of which 1·65 % totally. They were more likely to be women, older persons, non-smokers, to have a lower educational level and declared more food intolerances. They had higher consumption of fruit, vegetables and lower consumption of dairy products, salty/sweet and fatty foods and alcohol. After adjustments on confounders, a healthy dietary pattern was positively associated with total gluten avoidance (ORQuintile5vsQuintile1 = 14·44, 95 % CI 8·62, 24·19). Our study highlighted that, in this population, individuals who avoid gluten from their diet tend to have a diet more favourable to health. These results can serve as a basis for future studies investigating the potential consequences of a gluten-free diet in non-coeliac population.


Asunto(s)
Dieta Sin Gluten/estadística & datos numéricos , Dieta , Motivación , Adulto , Anciano , Enfermedad Celíaca , Estudios de Cohortes , Dieta Saludable/estadística & datos numéricos , Escolaridad , Ingestión de Energía , Femenino , Francia , Conductas Relacionadas con la Salud , Humanos , Masculino , Persona de Mediana Edad , Factores Socioeconómicos
8.
Plant J ; 91(5): 894-910, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28628250

RESUMEN

Wheat grain storage proteins (GSPs) make up most of the protein content of grain and determine flour end-use value. The synthesis and accumulation of GSPs depend highly on nitrogen (N) and sulfur (S) availability and it is important to understand the underlying control mechanisms. Here we studied how the einkorn (Triticum monococcum ssp. monococcum) grain proteome responds to different amounts of N and S supply during grain development. GSP composition at grain maturity was clearly impacted by nutrition treatments, due to early changes in the rate of GSP accumulation during grain filling. Large-scale analysis of the nuclear and albumin-globulin subproteomes during this key developmental phase revealed that the abundance of 203 proteins was significantly modified by the nutrition treatments. Our results showed that the grain proteome was highly affected by perturbation in the N:S balance. S supply strongly increased the rate of accumulation of S-rich α/ß-gliadin and γ-gliadin, and the abundance of several other proteins involved in glutathione metabolism. Post-anthesis N supply resulted in the activation of amino acid metabolism at the expense of carbohydrate metabolism and the activation of transport processes including nucleocytoplasmic transit. Protein accumulation networks were analyzed. Several central actors in the response were identified whose variation in abundance was related to variation in the amounts of many other proteins and are thus potentially important for GSP accumulation. This detailed analysis of grain subproteomes provides information on how wheat GSP composition can possibly be controlled in low-level fertilization condition.


Asunto(s)
Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Azufre/metabolismo , Triticum/metabolismo , Diploidia , Grano Comestible/metabolismo , Gliadina
9.
Plant J ; 83(2): 326-43, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25996785

RESUMEN

Wheat (Triticum aestivum L.) grain storage proteins (GSPs) are major determinants of flour end-use value. Biological and molecular mechanisms underlying the developmental and nutritional determination of GSP accumulation in cereals are as yet poorly understood. Here we timed the accumulation of GSPs during wheat grain maturation relative to changes in metabolite and transcript pools in different conditions of nitrogen (N) and sulfur (S) availability. We found that the N/S supply ratio modulated the duration of accumulation of S-rich GSPs and the rate of accumulation of S-poor GSPs. These changes are likely to be the result of distinct relationships between N and S allocation, depending on the S content of the GSP. Most developmental and nutritional modifications in GSP synthesis correlated with the abundance of structural gene transcripts. Changes in the expression of transport and metabolism genes altered the concentrations of several free amino acids under variable conditions of N and S supply, and these amino acids seem to be essential in determining GSP expression. The comprehensive data set generated and analyzed here provides insights that will be useful in adapting fertilizer use to variable N and S supply, or for breeding new cultivars with balanced and robust GSP composition.


Asunto(s)
Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Azufre/metabolismo , Transcripción Genética , Triticum/metabolismo , Aminoácidos/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Transcriptoma , Triticum/genética
10.
Plant Biotechnol J ; 14(1): 128-39, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25816894

RESUMEN

Free asparagine in cereals is known to be the precursor of acrylamide, a neurotoxic and carcinogenic product formed during cooking processes. Thus, the development of crops with lower asparagine is of considerable interest to growers and the food industry. In this study, we describe the development and application of a rapid (1)H-NMR-based analysis of cereal flour, that is, suitable for quantifying asparagine levels, and hence acrylamide-forming potential, across large numbers of samples. The screen was applied to flour samples from 150 bread wheats grown at a single site in 2005, providing the largest sample set to date. Additionally, screening of 26 selected cultivars grown for two further years in the same location and in three additional European locations in the third year (2007) provided six widely different environments to allow estimation of the environmental (E) and G x E effects on asparagine levels. Asparagine concentrations in the 150 genotypes ranged from 0.32 to 1.56 mg/g dry matter in wholemeal wheat flours. Asparagine levels were correlated with plant height and therefore, due to recent breeding activities to produce semi-dwarf varieties, a negative relationship with the year of registration of the cultivar was also observed. The multisite study indicated that only 13% of the observed variation in asparagine levels was heritable, whilst the environmental contribution was 36% and the GxE component was 43%. Thus, compared to some other phenotypic traits, breeding for low asparagine wheats presents a difficult challenge.


Asunto(s)
Asparagina/metabolismo , Ambiente , Espectroscopía de Protones por Resonancia Magnética , Semillas/metabolismo , Triticum/genética , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Grano Comestible/química , Harina/análisis , Cromatografía de Gases y Espectrometría de Masas , Genotipo , Patrón de Herencia/genética , Lluvia , Suelo , Encuestas y Cuestionarios , Temperatura
11.
J Exp Bot ; 65(20): 5849-65, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25148833

RESUMEN

Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base , representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology.


Asunto(s)
Flores/genética , Genoma de Planta/genética , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Adaptación Fisiológica , Cruzamiento , Ambiente , Flores/fisiología , Flores/efectos de la radiación , Genotipo , Modelos Biológicos , Fenotipo , Fotoperiodo , Factores de Tiempo , Triticum/fisiología , Triticum/efectos de la radiación
12.
Food Chem ; 448: 139148, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569409

RESUMEN

Wheat proteins can trigger immunogenic reactions due to their resistance to digestion and immunostimulatory epitopes. Here, we investigated the peptidomic map of partially digested bread samples and the fingerprint of epitope diversity from 16 wheat genotypes grown in two environmental conditions. Flour protein content and composition were characterized; gastric and jejunal peptides were quantified using LC-MS/MS, and genotypes were classified into high or low bread protein digestibility. Differences in flour protein content and peptide composition distinguish high from low digestibility genotypes in both growing environments. No common peptide signature was found between high- and low-digestible genotypes; however, the celiac or allergen epitopes were noted not to be higher in low-digestible genotypes. Overall, this study established a peptidomic and epitope diversity map of digested wheat bread and provided new insights and correlations between weather conditions, genotypes, digestibility and wheat sensitivities such as celiac disease and wheat allergy.

13.
J Exp Bot ; 64(12): 3627-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23881399

RESUMEN

Wheat grain storage protein (GSP) content and composition are the main determinants of the end-use value of bread wheat (Triticum aestivum L.) grain. The accumulation of glutenins and gliadins, the two main classes of GSP in wheat, is believed to be mainly controlled at the transcriptional level through a network of transcription factors. This regulation network could lead to stable cross-environment allometric scaling relationships between the quantity of GSP classes/subunits and the total quantity of nitrogen per grain. This work conducted a genetic mapping study of GSP content and composition and allometric scaling parameters of grain N allocation using a bread wheat worldwide core collection grown in three environments. The core collection was genotyped with 873 markers for genome-wide association and 167 single nucleotide polymorphism markers in 51 candidate genes for candidate association. The candidate genes included 35 transcription factors (TFs) expressed in grain. This work identified 74 loci associated with 38 variables, of which 19 were candidate genes or were tightly linked with candidate genes. Besides structural GSP genes, several loci putatively trans-regulating GSP accumulation were identified. Seven candidate TFs, including four wheat orthologues of barley TFs that control hordein gene expression, were associated or in strong linkage disequilibrium with markers associated with the composition or quantity of glutenin or gliadin, or allometric grain N allocation parameters, confirming the importance of the transcriptional control of GSP accumulation. Genome-wide association results suggest that the genes regulating glutenin and gliadin compositions are mostly distinct from each other and operate differently.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gliadina/genética , Glútenes/genética , Nitrógeno/metabolismo , Triticum/genética , Cromatografía Líquida de Alta Presión , Estudio de Asociación del Genoma Completo , Gliadina/química , Gliadina/metabolismo , Glútenes/química , Glútenes/metabolismo , Modelos Biológicos , Análisis por Matrices de Proteínas , Semillas/química , Semillas/genética , Semillas/metabolismo , Triticum/química , Triticum/metabolismo
14.
Int J Mol Sci ; 14(3): 5650-67, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23478438

RESUMEN

Analysis of Portuguese wheat (Triticum aestivum L.) landrace 'Barbela' revealed the existence of a new x-type high molecular weight-glutenin subunit (HMW-GS) encoded at the Glu-A1 locus, which we named 1Ax1.1. Using one-dimensional and two-dimensional electrophoresis and mass spectrometry, we compared subunit 1Ax1.1 with other subunits encoded at the Glu-A1 locus. Subunit 1Ax1.1 has a theoretical molecular weight of 93,648 Da (or 91,508 Da for the mature protein) and an isoelectric point (pI) of about 5.7, making it the largest and most acidic HMW-GS known to be encoded at Glu-A1. Specific primers were designed to amplify and sequence 2601 bp of the Glu-A1 locus from the 'Barbela 28' wheat genome. A very high level of identity was found between the sequence encoding 1Ax1.1 and those encoding other alleles of the locus. The major difference found was an insertion of 36 amino acids in the central repetitive domain.

15.
PLoS One ; 18(6): e0287645, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352279

RESUMEN

Grain storage proteins (GSPs) quantity and composition determine the end-use value of wheat flour. GSPs consists of low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins. GSP gene expression is controlled by a complex network of DNA-protein and protein-protein interactions, which coordinate the tissue-specific protein expression during grain development. The regulatory network has been most extensively studied in barley, particularly the two transcription factors (TFs) of the DNA binding with One Finger (DOF) family, barley Prolamin-box Binding Factor (BPBF) and Scutellum and Aleurone-expressed DOF (SAD). They activate hordein synthesis by binding to the Prolamin box, a motif in the hordein promoter. The BPBF ortholog previously identified in wheat, WPBF, has a transcriptional activity in expression of some GSP genes. Here, the wheat ortholog of SAD, named TaSAD, was identified. The binding of TaSAD to GSP gene promoter sequences in vitro and its transcriptional activity in vivo were investigated. In electrophoretic mobility shift assays, recombinant TaSAD and WPBF proteins bound to cis-motifs like those located on HMW-GS and LMW-GS gene promoters known to bind DOF TFs. We showed by transient expression assays in wheat endosperms that TaSAD and WPBF activate GSP gene expression. Moreover, co-bombardment of Storage Protein Activator (SPA) with WPBF or TaSAD had an additive effect on the expression of GSP genes, possibly through conserved cooperative protein-protein interactions.


Asunto(s)
Factores de Transcripción , Triticum , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo , Harina , Glútenes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolaminas/metabolismo , Expresión Génica
16.
Sci Rep ; 13(1): 22736, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123623

RESUMEN

The expression of cereal grain storage protein (GSP) genes is controlled by a complex network of transcription factors (TFs). Storage protein activator (SPA) is a major TF acting in this network but its specific function in wheat (Triticum aestivum L.) remains to be determined. Here we generated an RNAi line in which expression of the three SPA homoeologs was reduced. In this line and its null segregant we analyzed GSP accumulation and expression of GSP and regulatory TF genes under two regimes of nitrogen availability. We show that down regulation of SPA decreases grain protein concentration at maturity under low but not high nitrogen supply. Under low nitrogen supply, the decrease in SPA expression also caused a reduction in the total quantity of GSP per grain and in the ratio of GSP to albumin-globulins, without significantly affecting GSP composition. The slight reduction in GSP gene expression measured in the SPA RNAi line under low nitrogen supply did not entirely account for the more significant decrease in GSP accumulation, suggesting that SPA regulates additional levels of GSP synthesis. Our results demonstrate a clear role of SPA in the regulation of grain nitrogen metabolism when nitrogen is a limiting resource.


Asunto(s)
Proteínas de Granos , Proteínas de Granos/metabolismo , Triticum/genética , Triticum/metabolismo , Nitrógeno/metabolismo , Pan , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
17.
Data Brief ; 46: 108807, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36582985

RESUMEN

Most bread wheat is consumed after processing, which mainly depends on the quantity and quality of protein in the grain. Storage protein content and composition particularly influence the end use quality of milled grain products. Storage proteins are components of the gluten network that confer dough viscoelasticity, an essential property for processing. To explore grain storage protein diversity, 75 bread wheat accessions were grown with two replicates each at two locations. Grains were harvested at maturity and samples were phenotyped for each site and each replicate plant. Grain hardness, thousand-kernel weight and grain nitrogen content were measured. The protein composition of flour from each replicate was characterised by reverse phase-high performance liquid chromatography (RP-HPLC). The molecular distribution of flour polymers was determined by asymmetric flow field-flow fractionation (AF4) and dough technological properties were assessed using a Glutomatic system and a Chopin alveograph. In addition, the 75 accessions were genotyped by the BreedWheat 35k genotyping array (Axiom TaBW35K) containing 34,746 single nucleotide polymorphism markers (SNPs). The dataset produced by this work includes six files with raw data, two files with protocols and figures. Data show the genotypic and phenotypic variabilities of the material used and can be used to explore genetic and environmental effects on traits involved in grain protein quality. This dataset is associated to the research article "Differences in bread protein digestibility traced to wheat cultivar traits" [1].

18.
Chromosoma ; 120(2): 185-98, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21161258

RESUMEN

In bread wheat (Triticum aestivum L.), initial studies using deletion lines indicated that crossover (CO) events occur mainly in the telomeric regions of the chromosomes with a possible correlation with the presence of genes. However, little is known about the distribution of COs at the sequence level. To investigate this, we studied in detail the pattern of COs along a contig of 3.110 Mb using two F2 segregating populations (Chinese Spring × Renan (F2-CsRe) and Chinese Spring × Courtot (F2-CsCt)) each containing ~2,000 individuals. The availability of the sequence of the contig from Cs enabled the development of 318 markers among which 23 co-dominant polymorphic markers (11 SSRs and 12 SNPs) were selected for CO distribution analyses. The distribution of CO events was not homogeneous throughout the contig, ranging from 0.05 to 2.77 cM/Mb, but was conserved between the two populations despite very different contig recombination rate averages (0.82 cM/Mb in F2-CsRe vs 0.35 cM/Mb in F2-CsCt). The CO frequency was correlated with the percentage of coding sequence in Cs and with the polymorphism rate between Cs and Re or Ct in both populations, indicating an impact of these two factors on CO distribution. At a finer scale, COs were found in a region covering 2.38 kb, spanning a gene coding for a glycosyl transferase (Hga3), suggesting the presence of a CO hotspot. A non-crossover event covering at least 453 bp was also identified in the same interval. From these results, we can conclude that gene content could be one of the factors driving recombination in bread wheat.


Asunto(s)
Intercambio Genético , Meiosis , Recombinación Genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Polimorfismo de Nucleótido Simple
19.
J Exp Bot ; 63(16): 5945-55, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22996678

RESUMEN

For important food crops such as wheat and rice, grain yield depends on grain number and size. In rice (Oryza sativa), GW2 was isolated from a major quantitative trait locus for yield and encodes an E3 RING ligase that negatively regulates grain size. Wheat (Triticum aestivum) has TaGW2 homologues in the A, B, and D genomes, and polymorphisms in TaGW2-A were associated with grain width. Here, to investigate TaGW2 function, RNA interference (RNAi) was used to down-regulate TaGW2 transcript levels. Transgenic wheat lines showed significantly decreased grain size-related dimensions compared with controls. Furthermore, TaGW2 knockdown also caused a significant reduction in endosperm cell number. These results indicate that TaGW2 regulates grain size in wheat, possibly by controlling endosperm cell number. Wheat and rice GW2 genes thus seem to have divergent functions, with rice GW2 negatively regulating grain size and TaGW2 positively regulating grain size. Analysis of transcription of TaGW2 homoeologues in developing grains suggested that TaGW2-A and -D act in both the division and late grain-filling phases. Furthermore, biochemical and molecular analyses revealed that TaGW2-A is a functional E3 RING ubiquitin ligase with nucleocytoplasmic subcellular partitioning. A functional nuclear export sequence responsible for TaGW2-A export from the nucleus to the cytosol and retention in the nucleolus was identified. Therefore, these results show that TaGW2 acts in the regulation of grain size and may provide an important tool for enhancement of grain yield.


Asunto(s)
Regulación hacia Abajo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Semillas/crecimiento & desarrollo , Triticum/enzimología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Recuento de Células , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Datos de Secuencia Molecular , Semillas/genética , Semillas/metabolismo , Triticum/genética , Triticum/crecimiento & desarrollo
20.
Theor Appl Genet ; 125(8): 1677-86, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22850788

RESUMEN

Grain protein content in wheat has been shown to be affected by the NAM-B1 gene where the wildtype allele confers high levels of protein and micronutrients but can reduce yield. Two known non-functional alleles instead increase yield but lead to lower levels of protein and micronutrients. The wildtype allele in hexaploid bread wheat is so far mainly known from historical specimens and a few lines with an emmer wheat introgression. Here we report a screening for the wildtype allele in wheats of different origin. First, a worldwide core collection of 367 bread wheats with worldwide origin was screened and five accessions carrying the wildtype NAM-B1 allele were found. Several of these could be traced to a Fennoscandian origin and the wildtype allele was more frequent in spring wheat. These findings, together with the late maturation of spring wheat, suggested that the faster maturation caused by the wildtype allele might have preserved it in areas with a short growing season. Thus a second set consisting of 138 spring wheats of a northern origin was screened and as many as 33 % of the accessions had the wildtype allele, all of a Fennoscandian origin. The presence of the wildtype allele in landraces and cultivars is in agreement with the use of landraces in Fennoscandian wheat breeding. Last, 22 spelt wheats, a wheat type previously suggested to carry the wildtype allele, were screened and five wildtype accessions found. The wildtype NAM-B1 accessions found could be a suitable material for plant breeding efforts directed towards increasing the nutrient content of bread wheat.


Asunto(s)
Alelos , Genes de Plantas/genética , Proteínas de Plantas/genética , Semillas/genética , Triticum/genética , Ecotipo , Europa (Continente) , Frecuencia de los Genes/genética , Genotipo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA