Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Biol Chem ; 300(5): 107250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569935

RESUMEN

The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.


Asunto(s)
Hemo , Unión Proteica , Humanos , Sitios de Unión , Biología Computacional/métodos , Simulación por Computador , Bases de Datos de Proteínas , Hemo/metabolismo , Hemo/química , Hemoproteínas/metabolismo , Hemoproteínas/química , Hemoproteínas/genética , Modelos Moleculares , Estructura Terciaria de Proteína
2.
J Biol Chem ; 299(8): 105014, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414149

RESUMEN

The target for humoral immunity, SARS-CoV-2 spike glycoprotein, has become the focus of vaccine research and development. Previous work demonstrated that the N-terminal domain (NTD) of SARS-CoV-2 spike binds biliverdin-a product of heme catabolism-causing a strong allosteric effect on the activity of a subset of neutralizing antibodies. Herein, we show that the spike glycoprotein is also able to bind heme (KD = 0.5 ± 0.2 µM). Molecular modeling indicated that the heme group fits well within the same pocket on the SARS-CoV-2 spike NTD. Lined by aromatic and hydrophobic residues (W104, V126, I129, F192, F194, I203, and L226), the pocket provides a suitable environment to stabilize the hydrophobic heme. Mutagenesis of N121 has a substantive effect on heme binding (KD = 3000 ± 220 µM), confirming the pocket as a major heme binding location of the viral glycoprotein. Coupled oxidation experiments in the presence of ascorbate indicated that the SARS-CoV-2 glycoprotein can catalyze the slow conversion of heme to biliverdin. The heme trapping and oxidation activities of the spike may allow the virus to reduce levels of free heme during infection to facilitate evasion of the adaptive and innate immunity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Antivirales , Biliverdina , Receptores Virales/metabolismo , Anticuerpos Neutralizantes
3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035176

RESUMEN

In addition to heme's role as the prosthetic group buried inside many different proteins that are ubiquitous in biology, there is new evidence that heme has substantive roles in cellular signaling and regulation. This means that heme must be available in locations distant from its place of synthesis (mitochondria) in response to transient cellular demands. A longstanding question has been to establish the mechanisms that control the supply and demand for cellular heme. By fusing a monomeric heme-binding peroxidase (ascorbate peroxidase, mAPX) to a monomeric form of green-fluorescent protein (mEGFP), we have developed a heme sensor (mAPXmEGFP) that can respond to heme availability. By means of fluorescence lifetime imaging, this heme sensor can be used to quantify heme concentrations; values of the mean fluorescence lifetime (τMean) for mAPX-mEGFP are shown to be responsive to changes in free (unbound) heme concentration in cells. The results demonstrate that concentrations are typically limited to one molecule or less within cellular compartments. These miniscule amounts of free heme are consistent with a system that sequesters the heme and is able to buffer changes in heme availability while retaining the capability to mobilize heme when and where it is needed. We propose that this exchangeable supply of heme can operate using mechanisms for heme transfer that are analogous to classical ligand-exchange mechanisms. This exquisite control, in which heme is made available for transfer one molecule at a time, protects the cell against the toxic effect of excess heme and offers a simple mechanism for heme-dependent regulation in single-molecule steps.


Asunto(s)
Hemo/análisis , Hemo/metabolismo , Técnicas de Sonda Molecular , Ascorbato Peroxidasas , Escherichia coli , Proteínas Fluorescentes Verdes
4.
J Biol Chem ; 298(8): 102204, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772495

RESUMEN

The protozoan parasite Trypanosoma cruzi is the causative agent of American trypanosomiasis, otherwise known as Chagas disease. To survive in the host, the T. cruzi parasite needs antioxidant defense systems. One of these is a hybrid heme peroxidase, the T. cruzi ascorbate peroxidase-cytochrome c peroxidase enzyme (TcAPx-CcP). TcAPx-CcP has high sequence identity to members of the class I peroxidase family, notably ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP), as well as a mitochondrial peroxidase from Leishmania major (LmP). The aim of this work was to solve the structure and examine the reactivity of the TcAPx-CcP enzyme. Low temperature electron paramagnetic resonance spectra support the formation of an exchange-coupled [Fe(IV)=O Trp233•+] compound I radical species, analogous to that used in CcP and LmP. We demonstrate that TcAPx-CcP is similar in overall structure to APX and CcP, but there are differences in the substrate-binding regions. Furthermore, the electron transfer pathway from cytochrome c to the heme in CcP and LmP is preserved in the TcAPx-CcP structure. Integration of steady state kinetic experiments, molecular dynamic simulations, and bioinformatic analyses indicates that TcAPx-CcP preferentially oxidizes cytochrome c but is still competent for oxidization of ascorbate. The results reveal that TcAPx-CcP is a credible cytochrome c peroxidase, which can also bind and use ascorbate in host cells, where concentrations are in the millimolar range. Thus, kinetically and functionally TcAPx-CcP can be considered a hybrid peroxidase.


Asunto(s)
Citocromo-c Peroxidasa , Trypanosoma cruzi , Antioxidantes , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/metabolismo , Enfermedad de Chagas/parasitología , Citocromo-c Peroxidasa/química , Citocromo-c Peroxidasa/genética , Citocromo-c Peroxidasa/metabolismo , Citocromos c/metabolismo , Hemo/metabolismo , Humanos , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Especificidad por Sustrato , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(12): 6484-6490, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152099

RESUMEN

In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex formed between a redox metalloenzyme (ascorbate peroxidase) and its reducing substrate (ascorbate). In the neutron structure of the complex, the protonation states of the electron/proton donor (ascorbate) and all of the residues involved in the electron/proton transfer pathway are directly observed. This information sheds light on possible proton movements during heme-catalyzed oxygen activation, as well as on ascorbate oxidation.


Asunto(s)
Electrones , Metaloproteínas/química , Protones , Ascorbato Peroxidasas/química , Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Catálisis , Hemo/química , Enlace de Hidrógeno , Metaloproteínas/metabolismo , Modelos Moleculares , Difracción de Neutrones , Oxidación-Reducción
6.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527239

RESUMEN

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Asunto(s)
Proteínas CLOCK/química , Elementos E-Box , Hemo/química , Transducción de Señal , Factores de Transcripción ARNTL/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Catálisis , Relojes Circadianos , Criptocromos/química , ADN/química , Electrones , Escherichia coli/metabolismo , Humanos , Ligandos , Proteínas del Tejido Nervioso/química , Oxígeno/química , Proteínas Circadianas Period/química , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Transcripción Genética
7.
J Biol Chem ; 295(38): 13277-13286, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32723862

RESUMEN

The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.


Asunto(s)
Corteza Cerebral/química , Canales de Potasio Éter-A-Go-Go/química , Hemo/química , Neuronas/química , Corteza Cerebral/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Hemo/metabolismo , Humanos , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos
8.
Angew Chem Int Ed Engl ; 60(26): 14578-14585, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33826799

RESUMEN

Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Šand 1.50 Šcrystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.


Asunto(s)
Rayos Láser , Peroxidasas/química , Cristalografía por Rayos X , Modelos Moleculares , Peroxidasas/metabolismo
9.
J Biol Chem ; 293(14): 5210-5219, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29475945

RESUMEN

Electron transfer in all living organisms critically relies on formation of complexes between the proteins involved. The function of these complexes requires specificity of the interaction to allow for selective electron transfer but also a fast turnover of the complex, and they are therefore often transient in nature, making them challenging to study. Here, using small-angle neutron scattering with contrast matching with deuterated protein, we report the solution structure of the electron transfer complex between cytochrome P450 reductase (CPR) and its electron transfer partner cytochrome c This is the first reported solution structure of a complex between CPR and an electron transfer partner. The structure shows that the interprotein interface includes residues from both the FMN- and FAD-binding domains of CPR. In addition, the FMN is close to the heme of cytochrome c but distant from the FAD, indicating that domain movement is required between the electron transfer steps in the catalytic cycle of CPR. In summary, our results reveal key details of the CPR catalytic mechanism, including interactions of two domains of the reductase with cytochrome c and motions of these domains relative to one another. These findings shed light on interprotein electron transfer in this system and illustrate a powerful approach for studying solution structures of protein-protein complexes.


Asunto(s)
Citocromos c/química , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/ultraestructura , Citocromos c/ultraestructura , Transporte de Electrón , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Cinética , NADP/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Difracción de Neutrones/métodos , Neutrones , Oxidación-Reducción , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Termodinámica
10.
Acc Chem Res ; 51(2): 427-435, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29327921

RESUMEN

Aerobic organisms have evolved to activate oxygen from the atmosphere, which allows them to catalyze the oxidation of different kinds of substrates. This activation of oxygen is achieved by a metal center (usually iron or copper) buried within a metalloprotein. In the case of iron-containing heme enzymes, the activation of oxygen is achieved by formation of transient iron-oxo (ferryl) intermediates; these intermediates are called Compound I and Compound II. The Compound I and II intermediates were first discovered in the 1930s in horseradish peroxidase, and it is now known that these same species are used across the family of heme enzymes, which include all of the peroxidases, the heme catalases, the P450s, cytochrome c oxidase, and NO synthase. Many years have passed since the first observations, but establishing the chemical nature of these transient ferryl species remains a fundamental question that is relevant to the reactivity, and therefore the usefulness, of these species in biology. This Account summarizes experiments that were conceived and conducted at Leicester and presents our ideas on the chemical nature, stability, and reactivity of these ferryl heme species. We begin by briefly summarizing the early milestones in the field, from the 1940s and 1950s. We present comparisons between the nature and reactivity of the ferryl species in horseradish peroxidase, cytochrome c peroxidase, and ascorbate peroxidase; and we consider different modes of electron delivery to ferryl heme, from different substrates in different peroxidases. We address the question of whether the ferryl heme is best formulated as an (unprotonated) FeIV═O or as a (protonated) FeIV-OH species. A range of spectroscopic approaches (EXAFS, resonance Raman, Mossbauer, and EPR) have been used over many decades to examine this question, and in the last ten years, X-ray crystallography has also been employed. We describe how information from all of these studies has blended together to create an overall picture, and how the recent application of neutron crystallography has directly identified protonation states and has helped to clarify the precise nature of the ferryl heme in cytochrome c peroxidase and ascorbate peroxidase. We draw comparisons between the Compound I and Compound II species that we have observed in peroxidases with those found in other heme systems, notably the P450s, highlighting possible commonality across these heme ferryl systems. The identification of proton locations from neutron structures of these ferryl species opens the door for understanding the proton translocations that need to occur during O-O bond cleavage.

11.
Anal Biochem ; 572: 45-51, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30807737

RESUMEN

Accumulating evidence suggests a new role for cellular heme as a signalling molecule, in which interactions with target proteins are more transient than found with traditionally-defined hemoproteins. To study this role, a precise method is needed for determining the heme-binding affinity (or dissociation constant, Kd). Estimates of Kd are commonly made following a spectrophotometric titration of an apo-protein with hemin. An impediment to precise determination is, however, the challenge in discriminating between the Soret absorbance for the product (holo-protein) and that for the titrant (hemin). An altogether different approach has been used in this paper to separate contributions made by these components to absorbance values. The pure component spectra and concentration profiles are estimated by a multivariate curve-resolution (MCR) algorithm. This approach has significant advantages over existing methods. First, a more precise determination of Kd can be made as concentration profiles for all three components (apo-protein/holo-protein/hemin) are determined and can be simultaneously fitted to a theoretical-binding model. Second, an absorption spectrum for the holo-protein is calculated. This is a unique advantage of MCR and attractive for investigating proteins in which the nature of heme binding has not, hitherto, been characterised because the holo-protein spectrum provides information on the interaction.


Asunto(s)
Hemo/metabolismo , Hemina/metabolismo , Algoritmos , Hemo/química , Hemina/química , Mioglobina/química , Mioglobina/metabolismo , Unión Proteica , Espectrofotometría
12.
Proc Natl Acad Sci U S A ; 113(35): E5144-52, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528661

RESUMEN

Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models.


Asunto(s)
Hemo/metabolismo , Hemoproteínas/metabolismo , Espacio Intracelular/metabolismo , Peroxidasa/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Endocitosis , Células HEK293 , Hemo/química , Humanos , Microscopía Confocal , Orgánulos/metabolismo , Peroxidasa/química , Peroxidasa/genética
13.
Proc Natl Acad Sci U S A ; 113(14): 3785-90, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27006498

RESUMEN

Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels.


Asunto(s)
Hemo/metabolismo , Canales KATP/metabolismo , Receptores de Sulfonilureas/química , Secuencias de Aminoácidos/genética , Animales , Línea Celular , Células HEK293 , Humanos , Canales KATP/genética , Miocardio/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína , Ratas , Ratas Wistar , Receptores de Sulfonilureas/genética
15.
J Biol Inorg Chem ; 22(2-3): 175-183, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27909919

RESUMEN

It is well established that there are two different classes of enzymes-tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO)-that catalyse the O2-dependent oxidation of L-tryptophan to N-formylkynurenine. But it was not always so. This perspective presents a short history of the early TDO and IDO literature, the people that were involved in creating it, and the legacy that this left for the future.


Asunto(s)
Dioxigenasas/metabolismo , Hemo/metabolismo , Animales , Biocatálisis , Humanos , Oxidación-Reducción , Oxígeno/metabolismo
16.
Biochemistry ; 55(49): 6743-6750, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951658

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are heme-containing enzymes that catalyze the O2-dependent oxidation of l-tryptophan (l-Trp) in biological systems. Although many decades have passed since their discovery, the mechanism of tryptophan oxidation has not been established. It has been widely assumed that IDO and TDO react using the same mechanism, although there is no evidence that they do. For IDO, a Compound II (ferryl) species accumulates in the steady state and is implicated in the mechanism; in TDO, no such species has ever been observed. In this paper, we examine the kinetics of tryptophan oxidation in TDO. We find no evidence for the accumulation of Compound II during TDO catalysis. Instead, a ternary [Fe(II)-O2, l-Trp] complex is detected under steady state conditions. The absence of a Compound II species in the steady state in TDO is not due to an intrinsic inability of the TDO enzyme to form ferryl heme, because Compound II can be formed directly through a different route in which ferrous heme is reacted with peroxide. We interpret the data to mean that the rate-limiting step in the IDO and TDO mechanisms is not the same.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Triptófano Oxigenasa/metabolismo , Cinética , Espectrometría de Masas , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
17.
J Biol Chem ; 290(52): 30924-30, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26511316

RESUMEN

The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Quinurenina/química , Oxígeno/química , Triptófano/química , Catálisis , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Especificidad por Sustrato , Triptófano/metabolismo
18.
J Biol Inorg Chem ; 21(1): 63-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26666777

RESUMEN

A cationic class III peroxidase from Sorghum bicolor was purified to homogeneity. The enzyme contains a high-spin heme, as evidenced by UV-visible spectroscopy and EPR. Steady state oxidation of guaiacol was demonstrated and the enzyme was shown to have higher activity in the presence of calcium ions. A Fe(III)/Fe(II) reduction potential of -266 mV vs NHE was determined. Stopped-flow experiments with H2O2 showed formation of a typical peroxidase Compound I species, which converts to Compound II in the presence of calcium. A crystal structure of the enzyme is reported, the first for a sorghum peroxidase. The structure reveals an active site that is analogous to those for other class I heme peroxidase, and a substrate binding site (assigned as arising from binding of indole-3-acetic acid) at the γ-heme edge. Metal binding sites are observed in the structure on the distal (assigned as a Na(+) ion) and proximal (assigned as a Ca(2+)) sides of the heme, which is consistent with the Ca(2+)-dependence of the steady state and pre-steady state kinetics. It is probably the case that the structural integrity (and, thus, the catalytic activity) of the sorghum enzyme is dependent on metal ion incorporation at these positions.


Asunto(s)
Hemo/química , Peroxidasas/química , Sorghum/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Cinética
19.
J Biol Chem ; 287(53): 44372-83, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23148223

RESUMEN

This paper presents the structure of MsAcg (MSMEG_5246), a Mycobacterium smegmatis homologue of Mycobacterium tuberculosis Acg (Rv2032) in its reduced form at 1.6 Å resolution using x-ray crystallography. Rv2032 is one of the most induced genes under the hypoxic model of tuberculosis dormancy. The Acg family turns out to be unusual flavin mononucleotide (FMN)-binding proteins that have probably arisen by gene duplication and fusion from a classical homodimeric nitroreductase such that the monomeric protein resembles a classical nitroreductase dimer but with one active site deleted and the other active site covered by a unique lid. The FMN cofactor is not reduced by either NADH or NADPH, but the chemically reduced enzyme is capable of reduction of nitro substrates, albeit at no kinetic advantage over free FMN. The reduced enzyme is rapidly oxidized by oxygen but without any evidence for a radical state commonly seen in oxygen-sensitive nitroreductases. The presence of the unique lid domain, the lack of reduction by NAD(P)H, and the slow rate of reaction of the chemically reduced protein raises a possible alternative function of Acg proteins in FMN storage or sequestration from other biochemical pathways as part of the bacteria's adaptation to a dormancy state.


Asunto(s)
Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Nitrorreductasas/química , Sitios de Unión , Cristalografía por Rayos X , Mononucleótido de Flavina/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , NAD/metabolismo , NADP/metabolismo , Nitrorreductasas/genética , Nitrorreductasas/metabolismo
20.
JACS Au ; 1(10): 1541-1555, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34723258

RESUMEN

Heme is essential for the survival of virtually all living systems-from bacteria, fungi, and yeast, through plants to animals. No eukaryote has been identified that can survive without heme. There are thousands of different proteins that require heme in order to function properly, and these are responsible for processes such as oxygen transport, electron transfer, oxidative stress response, respiration, and catalysis. Further to this, in the past few years, heme has been shown to have an important regulatory role in cells, in processes such as transcription, regulation of the circadian clock, and the gating of ion channels. To act in a regulatory capacity, heme needs to move from its place of synthesis (in mitochondria) to other locations in cells. But while there is detailed information on how the heme lifecycle begins (heme synthesis), and how it ends (heme degradation), what happens in between is largely a mystery. Here we summarize recent information on the quantification of heme in cells, and we present a discussion of a mechanistic framework that could meet the logistical challenge of heme distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA