Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biol Chem ; 297(3): 101024, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343568

RESUMEN

Cytokinesis, the final step of mitosis, is mediated by an actomyosin contractile ring, the formation of which is temporally and spatially regulated following anaphase onset. Aurora-B is a member of the chromosomal passenger complex, which regulates various processes during mitosis; it is not understood, however, how Aurora-B is involved in cytokinesis. Here, we show that Aurora-B and myosin-IIB form a complex in vivo during telophase. Aurora-B phosphorylates the myosin-IIB rod domain at threonine 1847 (T1847), abrogating the ability of myosin-IIB monomers to form filaments. Furthermore, phosphorylation of myosin-IIB filaments by Aurora-B also promotes filament disassembly. We show that myosin-IIB possessing a phosphomimetic mutation at T1847 was unable to rescue cytokinesis failure caused by myosin-IIB depletion. Cells expressing a phosphoresistant mutation at T1847 had significantly longer intercellular bridges, implying that Aurora-B-mediated phosphorylation of myosin-IIB is important for abscission. We propose that myosin-IIB is a substrate of Aurora-B and reveal a new mechanism of myosin-IIB regulation by Aurora-B in the late stages of mitosis.


Asunto(s)
Aurora Quinasa B/metabolismo , Citocinesis/fisiología , Cadenas Pesadas de Miosina/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Fosforilación , Especificidad por Sustrato
2.
J Cell Sci ; 132(14)2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315909

RESUMEN

An acto-myosin contractile ring, which forms after anaphase onset and is highly regulated in time and space, mediates cytokinesis, the final step of mitosis. The chromosomal passenger complex (CPC), composed of Aurora-B kinase, INCENP, borealin and survivin (also known as BIRC5), regulates various processes during mitosis, including cytokinesis. It is not understood, however, how CPC regulates cytokinesis. We show that survivin binds to non-muscle myosin II (NMII), regulating its filament assembly. Survivin and NMII interact mainly in telophase, and Cdk1 regulates their interaction in a mitotic-phase-specific manner, revealing the mechanism for the specific timing of survivin-NMII interaction during mitosis. The survivin-NMII interaction is indispensable for cytokinesis, and its disruption leads to multiple mitotic defects. We further show that only the survivin homodimer binds to NMII, attesting to the biological importance for survivin homodimerization. We suggest a novel function for survivin in regulating the spatio-temporal formation of the acto-NMII contractile ring during cytokinesis and we elucidate the role of Cdk1 in regulating this process.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Citocinesis , Miosina Tipo II/metabolismo , Survivin/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitosis , Modelos Biológicos , Miosina Tipo II/química , Fosforilación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Telofase
3.
J Cell Sci ; 127(Pt 2): 295-304, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24213535

RESUMEN

Non-muscle myosin IIA (NMII-A) and the tumor suppressor lethal giant larvae 1 (Lgl1) play a central role in the polarization of migrating cells. Mammalian Lgl1 interacts directly with NMII-A, inhibiting its ability to assemble into filaments in vitro. Lgl1 also regulates the cellular localization of NMII-A, the maturation of focal adhesions and cell migration. In Drosophila, phosphorylation of Lgl affects its association with the cytoskeleton. Here we show that phosphorylation of mammalian Lgl1 by aPKCζ prevents its interaction with NMII-A both in vitro and in vivo, and affects its inhibition of NMII-A filament assembly. Phosphorylation of Lgl1 affects its cellular localization and is important for the cellular organization of the acto-NMII cytoskeleton. We further show that Lgl1 forms two distinct complexes in vivo, Lgl1-NMIIA and Lgl1-Par6α-aPKCζ, and that the formation of these complexes is affected by the phosphorylation state of Lgl1. The complex Lgl1-Par6α-aPKCζ resides in the leading edge of the cell. Finally, we show that aPKCζ and NMII-A compete to bind directly to Lgl1 at the same domain. These results provide new insights into the mechanism regulating the interaction between Lgl1, NMII-A, Par6α and aPKCζ in polarized migrating cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glicoproteínas/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Citoesqueleto/metabolismo , Glicoproteínas/química , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Células 3T3 NIH , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Seudópodos/metabolismo , Proteínas Supresoras de Tumor/química
4.
J Biol Chem ; 288(14): 9779-9789, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23426373

RESUMEN

The motor protein nonmuscle myosin II (NMII) must undergo dynamic oligomerization into filaments to perform its cellular functions. A small nonhelical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. This tailpiece is a key regulatory domain affecting NMII filament assembly properties and is subject to phosphorylation in vivo. We previously demonstrated that the positively charged region of the tailpiece binds to assembly-incompetent NMII-C fragments, inducing filament assembly. In the current study, we investigated the molecular mechanisms by which the tailpiece regulates NMII-C self-assembly. Using alanine scan, we found that specific positive and aromatic residues within the positively charged region of the tailpiece are important for inducing NMII-C filament assembly and for filament elongation. Combining peptide arrays with deletion studies allowed us to identify the tailpiece binding sites in the coiled-coil rod. Elucidation of the mechanism by which the tailpiece induces filament assembly permitted us further investigation into the role of tailpiece phosphorylation. Sedimentation and CD spectroscopy identified that phosphorylation of Thr(1957) or Thr(1960) inhibited the ability of the tailpiece to bind the coiled-coil rod and to induce NMII-C filament formation. This study provides molecular insight into the role of specific residues within the NMII-C tailpiece that are responsible for shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.


Asunto(s)
Miosina Tipo II/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dicroismo Circular , Concentración de Iones de Hidrógeno , Ratones , Microscopía Electrónica/métodos , Datos de Secuencia Molecular , Mutación , Miosina Tipo II/química , Miosinas/química , Péptidos/química , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Treonina/química
5.
Cell Adh Migr ; 17(1): 1-23, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37743653

RESUMEN

E-cadherin-catenin complex together with the cytoskeleton, builds the core of Adherens junctions (AJs). It has been reported that Scribble stabilizes the coupling of E-cadherin with catenins promoting epithelial cell adhesion, but the mechanism remains unknown. We show that Scribble, Lgl1, and NMII-A reside in a complex with E-cadherin-catenin complex. Depletion of either Scribble or Lgl1 disrupts the localization of E-cadherin-catenin complex to AJs. aPKCζ phosphorylation of Lgl1 regulates AJ localization of Lgl1 and E-cadherin-catenin complexes. Both Scribble and Lgl1 regulate the activation and recruitment of NMII-A at AJs. Finally, Scribble and Lgl1 are downregulated by TGFß-induced EMT, and their re-expression during EMT impedes its progression. Our results provide insight into the mechanism regulating AJ integrity by Scribble, Lgl1, and NMII-A.


Asunto(s)
Miosina Tipo IIA no Muscular , beta Catenina , Cadherinas , Cateninas , Membrana Celular
6.
J Biol Chem ; 285(10): 7079-86, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-19959848

RESUMEN

The motor protein, non-muscle myosin II (NMII), must undergo dynamic oligomerization into filaments to participate in cellular processes such as cell migration and cytokinesis. A small non-helical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. In this study, we investigated the role of the tailpiece in NMII-C self-assembly. We show that the tailpiece is natively unfolded, as seen by circular dichroism and NMR experiments, and is divided into two regions of opposite charge. The positively charged region (Tailpiece(1946-1967)) starts at residue 1946 and is extended by seven amino acids at its N terminus from the traditional coiled-coil ending proline (Tailpiece(1953-1967)). Pull-down and sedimentation assays showed that the positive Tailpiece(1946-1967) binds to assembly incompetent NMII-C fragments inducing filament assembly. The negative region, residues 1968-2000, is responsible for NMII paracrystal morphology as determined by chimeras in which the negative region was swapped between the NMII isoforms. Mixing the positive and negative peptides had no effect on the ability of the positive peptide to bind and induce filament assembly. This study provides molecular insight into the role of the structurally disordered tailpiece of NMII-C in shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.


Asunto(s)
Citoesqueleto , Miosina Tipo II/química , Miosina Tipo II/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Citoesqueleto/química , Citoesqueleto/ultraestructura , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Miosina Tipo II/genética , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Pliegue de Proteína , Isoformas de Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
8.
J Biol Chem ; 284(37): 24948-57, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19553683

RESUMEN

Non muscle myosin II (NMII) is a major motor protein present in all cell types. The three known vertebrate NMII isoforms share high sequence homology but play different cellular roles. The main difference in sequence resides in the C-terminal non-helical tailpiece (tailpiece). In this study we demonstrate that the tailpiece is crucial for proper filament size, overcoming the intrinsic properties of the coiled-coil rod. Furthermore, we show that the tailpiece by itself determines the NMII filament structure in an isoform-specific manner, thus providing a possible mechanism by which each NMII isoform carries out its unique cellular functions. We further show that the tailpiece determines the cellular localization of NMII-A and NMII-B and is important for NMII-C role in focal adhesion complexes. We mapped NMII-C sites phosphorylated by protein kinase C and casein kinase II and showed that these phosphorylations affect its solubility properties and cellular localization. Thus phosphorylation fine-tunes the tailpiece effects on the coiled-coil rod, enabling dynamic regulation of NMII-C assembly. We thus show that the small tailpiece of NMII is a distinct domain playing a role in isoform-specific filament assembly and cellular functions.


Asunto(s)
Miosina Tipo II/fisiología , Animales , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X/métodos , Fibroblastos/metabolismo , Humanos , Ratones , Microscopía Electrónica/métodos , Miosina Tipo II/metabolismo , Fosforilación , Isoformas de Proteínas , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Cicatrización de Heridas
9.
Mol Biol Cell ; 31(20): 2234-2248, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32697665

RESUMEN

Scribble (Scrib) and Lethal giant larvae 1 (Lgl1) are conserved polarity proteins that play important roles in different forms of cell polarity. The roles of Scrib and Lgl1 in apical-basal cell polarity have been studied extensively, but little is known about their roles in the cell polarity of migrating cells. Furthermore, the effect of Scrib and Lgl1 interaction on cell polarity is largely unknown. In this study, we show that Scrib, through its leucine-rich repeat domain, forms a complex in vivo with Lgl1. Scrib also forms a complex with myosin II, and Scrib, Lgl1, and myosin II colocalize at the leading edge of migrating cells. The cellular localization and the cytoskeletal association of Scrib and Lgl1 are interdependent, as depletion of either protein affects its counterpart. In addition, depletion of either Scrib or Lgl1 disrupts the cellular localization of myosin II. We show that depletion of either Scrib or Lgl1 affects cell adhesion through the inhibition of focal adhesion disassembly. Finally, we show that Scrib and Lgl1 are required for proper cell polarity of migrating cells. These results provide new insights into the mechanism regulating the cell polarity of migrating cells by Scrib, Lgl1, and myosin II.


Asunto(s)
Movimiento Celular/fisiología , Proteínas del Citoesqueleto/genética , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor/genética , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Movimiento Celular/genética , Polaridad Celular/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Miosina Tipo II/metabolismo , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Proteínas Supresoras de Tumor/metabolismo
10.
Mol Biol Cell ; 17(3): 1364-74, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16394101

RESUMEN

Nonmuscle myosin II is an important component of the cytoskeleton, playing a major role in cell motility and chemotaxis. We have previously demonstrated that, on stimulation with epidermal growth factor (EGF), nonmuscle myosin heavy chain II-B (NMHC-IIB) undergoes a transient phosphorylation correlating with its cellular localization. We also showed that members of the PKC family are involved in this phosphorylation. Here we demonstrate that of the two conventional PKC isoforms expressed by prostate cancer cells, PKCbetaII and PKCgamma, PKCgamma directly phosphorylates NMHC-IIB. Overexpression of wild-type and kinase dead dominant negative PKCgamma result in both altered NMHC-IIB phosphorylation and subcellular localization. We have also mapped the phosphorylation sites of PKCgamma on NMHC-IIB. Conversion of the PKCgamma phosphorylation sites to alanine residues, reduces the EGF-dependent NMHC-IIB phosphorylation. Aspartate substitution of these sites reduces NMHC-IIB localization into cytoskeleton. These results indicate that PKCgamma regulates NMHC-IIB phosphorylation and cellular localization in response to EGF stimulation.


Asunto(s)
Citoesqueleto/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Proteína Quinasa C/metabolismo , Actomiosina/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/metabolismo , Células COS , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Citoesqueleto/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Expresión Génica , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Cadenas Pesadas de Miosina/química , Miosina Tipo IIB no Muscular/química , Mapeo Peptídico , Fosforilación , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
11.
Mol Biol Cell ; 17(7): 2869-81, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16611744

RESUMEN

Many signaling pathways regulate the function of the cellular cytoskeleton. Yet we know very little about the proteins involved in the cross-talk between the signaling and the cytoskeletal systems. Here we show that myosin II-B, an important cytoskeletal protein, resides in a complex with p21-activated kinase 1 (PAK1) and atypical protein kinase C (PKC) zeta (aPKCzeta) and that the interaction between these proteins is EGF-dependent. We further show that PAK1 is involved in aPKCzeta phosphorylation and that aPKCzeta phosphorylates myosin II-B directly on a specific serine residue in an EGF-dependent manner. This latter phosphorylation is specific to isoform B of myosin II, and it leads to slower filament assembly of myosin II-B. Furthermore, a decrease in aPKCzeta expression in the cells alters myosin II-B cellular organization. Our finding of a new signaling pathway involving PAK1, aPKCzeta, and myosin II-B, which is implicated in myosin II-B filament assembly and cellular organization, provides an important link between the signaling system and cytoskeletal dynamics.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Citoesqueleto/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Mutación , Miosina Tipo IIB no Muscular/análisis , Fosforilación , Proteína Quinasa C/análisis , Serina/metabolismo , Transducción de Señal , Células Tumorales Cultivadas , Quinasas p21 Activadas
12.
J Mol Biol ; 366(4): 1232-42, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17207815

RESUMEN

The coiled coil is one of the most common protein-structure motifs. It is believed to be adopted by 3-5% of all amino acids in proteins. It comprises two or more alpha-helical chains wrapped around one another. The sequences of most coiled coils are characterized by a seven-residue (heptad) repeat, denoted (abcdefg)(n). Residues at the a and d positions define the helical interface (core) and are usually hydrophobic, though about 20% are polar or charged. We show that parallel coiled-coils have a unique pattern of their negatively charged residues at the core positions: aspartic acid is excluded from these positions while glutamic acid is not. In contrast the antiparallel structures are more permissive in their amino acid usage. We show further, and for the first time, that incorporation of Asp but not Glu into the a positions of a parallel coiled coil creates a flexible hinge and that the maximal hinge angle is being directly related to the number of incorporated mutations. These new computational and experimental observations will be of use in improving protein-structure predictions, and as rules to guide rational design of novel coiled-coil motifs and coiled coil-based materials.


Asunto(s)
ADN , Cadenas Pesadas de Miosina/química , Miosina Tipo II/química , Estructura Secundaria de Proteína , Ácido Aspártico/química , Sitios de Unión , Cadenas Pesadas de Miosina/genética , Miosina Tipo II/genética , Pliegue de Proteína , Relación Estructura-Actividad
13.
Cell Adh Migr ; 11(4): 347-359, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27541056

RESUMEN

Cell motility is an essential cellular process for a variety of biological events. It requires cross-talk between the signaling and the cytoskeletal systems. Despite the recognized importance of aPKCζ for cell motility, there is little understanding of the mechanism by which aPKCζ mediates extracellular signals to the cytoskeleton. In the present study, we report that aPKCζ is required for the cellular organization of acto-non-muscle myosin II (NMII) cytoskeleton, for proper cell adhesion and directed cell migration. We show that aPKCζ mediates EGF-dependent RhoA activation and recruitment to the cell membrane. We also show that aPKCζ mediates EGF-dependent myosin light chain (MRLC) phosphorylation that is carried out by Rho-associated protein kinase (ROCK), and that aPKCζ is required for EGF-dependent phosphorylation and inhibition of the myosin phosphatase targeting subunit (MYPT). Finally, we show that aPKCζ mediates the spatial organization of the acto-NMII cytoskeleton in response to EGF stimulation. Our data suggest that aPKCζ is an essential component regulator of acto-NMII cytoskeleton organization leading to directed cell migration, and is a mediator of the EGF signal to the cytoskeleton.


Asunto(s)
Movimiento Celular , Cadenas Ligeras de Miosina/metabolismo , Proteína Quinasa C/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Ratones , Modelos Biológicos , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
14.
J Mol Biol ; 353(3): 613-28, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16181641

RESUMEN

Molecular packing of myosin II coiled-coil rods into myosin filaments and the role of skip residues in the heptad sequence have been investigated. Sequence comparison of rods from skeletal, smooth and non-muscle myosin II shows that different myosin II subtypes have significantly different charge distributions. Analysis of the ionic interactions between adjacent rods with changing molecular overlap relates the different patterns of charge to the different structures of skeletal and smooth muscle myosin II filaments. It is shown in the case of skeletal muscle myosin II that the skip residues have a critical role in keeping these unique patterns of charge in perfect phase. Only one of the previously suggested packing models for myosin II filaments, with a slight modification, is supported, since it satisfies all the sequence-predicted axial shifts between adjacent rods. Such analysis significantly advances understanding of myosin filament assembly properties and will help to provide a basis for the proper understanding of myosin-associated diseases.


Asunto(s)
Miosina Tipo II/química , Análisis de Fourier , Humanos , Músculos , Conformación Proteica , Secuencias Repetitivas de Aminoácido , Electricidad Estática
15.
Cell Signal ; 17(9): 1137-48, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15993754

RESUMEN

Serine/threonine p21-activated kinase is an effector of Rac with a key role in the regulation of cytoskeletal organization. Non-muscle myosin II is a molecular motor, which is an important component of the cytoskeleton. Non-muscle myosin II-B plays a major role in cell motility and chemotaxis. We investigated the role of Rac and p21-activated kinase 1 (PAK1) in the regulation of myosin II-B in prostate cancer cells in response to epidermal growth factor (EGF) stimulation. We found that both Rac and PAK1 affect EGF-dependent non-muscle heavy chain II-B localization and cell morphology. We further found that a dominant negative mutant of PAK1 significantly inhibits EGF-dependent myosin II-B heavy chains phosphorylation and filament disassembly. Furthermore, cells expressing the dominant negative mutant exhibited an increase in EGF-dependent myosin light chain phosphorylation and diminished chemotaxis towards EGF. To our knowledge this is the first report exploring the role of PAK1 in the regulation of both non-muscle myosin II-B heavy chains and light chains. Furthermore, the data presented here suggest that PAK1 plays a crucial role in the regulation of cell morphology and chemotaxis by regulating the phosphorylation and cellular localization of myosin II-B.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Quimiotaxis , Miosina Tipo IIB no Muscular/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Línea Celular Tumoral , Forma de la Célula , Factor de Crecimiento Epidérmico/farmacología , Humanos , Mutación , Cadenas Pesadas de Miosina/análisis , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Quinasas p21 Activadas , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/fisiología
16.
Cell Adh Migr ; 8(4): 378-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482644

RESUMEN

Cell migration is a highly integrated, multistep process that plays an important role in physiological and pathological processes. The migrating cell is highly polarized, with complex regulatory pathways that integrate its component processes spatially and temporally. The Drosophila tumor suppressor, Lethal (2) giant larvae (Lgl), regulates apical-basal polarity in epithelia and asymmetric cell division. But little is known about the role of Lgl in establishing cell polarity in migrating cells. Recently, we showed that the mammalian Lgl1 interacts directly with non-muscle myosin IIA (NMIIA), inhibiting its ability to assemble into filaments in vitro. Lgl1 also regulates the cellular localization of NMIIA, the maturation of focal adhesions, and cell migration. We further showed that phosphorylation of Lgl1 by aPKCζ prevents its interaction with NMIIA and is important for Lgl1 and acto-NMII cytoskeleton cellular organization. Lgl is a critical downstream target of the Par6-aPKC cell polarity complex; we showed that Lgl1 forms two distinct complexes in vivo, Lgl1-NMIIA and Lgl1-Par6-aPKCζ in different cellular compartments. We further showed that aPKCζ and NMIIA compete to bind directly to Lgl1 through the same domain. These data provide new insights into the role of Lgl1, NMIIA, and Par6-aPKCζ in establishing front-rear polarity in migrating cells. In this commentary, I discuss the role of Lgl1 in the regulation of the acto-NMII cytoskeleton and its regulation by the Par6-aPKCζ polarity complex, and how Lgl1 activity may contribute to the establishment of front-rear polarity in migrating cells.


Asunto(s)
Movimiento Celular , Polaridad Celular , Citoesqueleto/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Miosina Tipo IIA no Muscular/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Epitelio , Adhesiones Focales , Fosforilación , Proteína Quinasa C/fisiología
17.
Mol Biol Cell ; 23(4): 591-601, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22219375

RESUMEN

The Drosophila tumor suppressor Lethal (2) giant larvae (Lgl) regulates the apical-basal polarity in epithelia and asymmetric cell division. However, little is known about the role of Lgl in cell polarity in migrating cells. In this study we show direct physiological interactions between the mammalian homologue of Lgl (Lgl1) and the nonmuscle myosin II isoform A (NMII-A). We demonstrate that Lgl1 and NMII-A form a complex in vivo and provide data that Lgl1 inhibits NMII-A filament assembly in vitro. Furthermore, depletion of Lgl1 results in the unexpected presence of NMII-A in the cell leading edge, a region that is not usually occupied by this protein, suggesting that Lgl1 regulates the cellular localization of NMII-A. Finally, we show that depletion of Lgl1 affects the size and number of focal adhesions, as well as cell polarity, membrane dynamics, and the rate of migrating cells. Collectively these findings indicate that Lgl1 regulates the polarity of migrating cells by controlling the assembly state of NMII-A, its cellular localization, and focal adhesion assembly.


Asunto(s)
Movimiento Celular , Adhesiones Focales/metabolismo , Proteínas de Homeodominio/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células COS , Polaridad Celular , Chlorocebus aethiops , Proteínas del Citoesqueleto , Adhesiones Focales/ultraestructura , Células HEK293 , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Ratones , Células 3T3 NIH , Conformación Proteica , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
18.
PLoS One ; 3(1): e1496, 2008 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-18231583

RESUMEN

BACKGROUND: Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we examine mechanisms controlling filament assembly of non-muscle myosin IIB heavy chain (MHC-IIB). We show that in vitro the entire C-terminus region of net positive charge, found in myosin II rods, is important for self-assembly of MHC-IIB fragments. In contrast, no particular sequences in the rod region with net negative charge were identified as important for self-assembly, yet a minimal area from this region is necessary. Proper paracrystal formation by MHC-IIB fragments requires the 196aa charge periodicity along the entire coiled-coil region. In vivo, in contrast to self-assembly in vitro, negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB. CONCLUSIONS/SIGNIFICANCE: A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB.


Asunto(s)
Cadenas Pesadas de Miosina/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Citoesqueleto/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Cadenas Pesadas de Miosina/ultraestructura
19.
Mol Biol Cell ; 19(12): 5032-46, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18799623

RESUMEN

Rap1 enhances integrin-mediated adhesion but the link between Rap1 activation and integrin function in collagen phagocytosis is not defined. Mass spectrometry of Rap1 immunoprecipitates showed that the association of Rap1 with nonmuscle myosin heavy-chain II-A (NMHC II-A) was enhanced by cell attachment to collagen beads. Rap1 colocalized with NM II-A at collagen bead-binding sites. There was a transient increase in myosin light-chain phosphorylation after collagen-bead binding that was dependent on myosin light-chain kinase but not Rho kinase. Inhibition of myosin light-chain phosphorylation, but not myosin II-A motor activity inhibited collagen-bead binding and Rap activation. In vitro binding assays demonstrated binding of Rap1A to filamentous myosin rods, and in situ staining of permeabilized cells showed that NM II-A filaments colocalized with F-actin at collagen bead sites. Knockdown of NM II-A did not affect talin, actin, or beta1-integrin targeting to collagen beads but targeting of Rap1 and vinculin to collagen was inhibited. Conversely, knockdown of Rap1 did not affect localization of NM II-A to beads. We conclude that MLC phosphorylation in response to initial collagen-bead binding promotes NM II-A filament assembly; binding of Rap1 to myosin filaments enables Rap1-dependent integrin activation and enhanced collagen phagocytosis.


Asunto(s)
Colágeno/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Fagocitosis/fisiología , Proteínas de Unión al GTP rap1/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Activación Enzimática , Fibroblastos/citología , Fibroblastos/fisiología , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Ratones , Datos de Secuencia Molecular , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosina Tipo IIA no Muscular/genética , Péptidos/genética , Péptidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Talina/genética , Talina/metabolismo , Proteínas de Unión al GTP rap1/genética
20.
J Biol Chem ; 277(39): 36005-8, 2002 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-12130648

RESUMEN

Eukaryotic cells need morphological polarity to carry out chemotaxis (Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B., and Devreotes, P. N. (1998) Cell 95, 81-91; Jin, T., Zhang, N., Long, Y., Parent, C., and Devreotes, P. N. (2000) Science 287, 1034-1036; Servant, G., Weiner, O. D., Herzmark, P., Balla, T., Sedat, J. W., and Bourne, H. R. (2000) Science 287, 1037-1040), but sensing direction does not require polarization of chemoattractant receptors. When cells are exposed to a gradient of chemoattractant, activation occurs selectively at the stimulated edge. Such localized activation, transmitted by the recruitment of cytosolic proteins, may be a general mechanism for gradient sensing by G protein-linked chemotactic systems. Here we show that in Dictyostelium discoideum cells exposed to a cAMP gradient the myosin II heavy chain kinase (MHC-PKC) and myosin II translocate to opposite ends of the cell. We further show that MHC-PKC C1 domain is responsible for the localization of MHC-PKC to the cell leading edge, but it is not sufficient to promote cell polarization. Our findings suggest a mechanism by which MHC-PKC regulates myosin II, allowing cell polarization and movement in the direction of the cAMP source.


Asunto(s)
Miosina Tipo II/química , Proteína Quinasa C/química , Animales , Western Blotting , Quimiotaxis , AMP Cíclico/metabolismo , Citosol/metabolismo , Dictyostelium , Vectores Genéticos , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Miosina Tipo II/metabolismo , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA