Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 78(1): 341-356, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27416890

RESUMEN

PURPOSE: MR elastography (MRE) of the brain is being explored as a biomarker of neurodegenerative disease such as dementia. However, MRE measures for healthy brain have varied widely. Differing wave delivery methodologies may have influenced this, hence finite element-based simulations were performed to explore this possibility. METHODS: The natural frequencies of a series of cranial models were calculated, and MRE-associated vibration was simulated for different wave delivery methods at varying frequency, using simple isotropic viscoelastic material models for the brain. Displacement fields and the corresponding brain constitutive properties estimated by standard inversion techniques were compared across delivery methods and frequencies. RESULTS: The delivery methods produced widely different MRE displacement fields and inversions. Furthermore, resonances at natural frequencies influenced the displacement patterns. Consequently, some delivery methods led to lower inversion errors than others, and the error on the storage modulus varied by up to 11% between methods. CONCLUSION: Wave delivery has a considerable impact on brain MRE reliability. Assuming small variations in brain biomechanics, as recently reported to accompany neurodegenerative disease (e.g., 7% for Alzheimer's disease), the effect of wave delivery is important. Hence, a consensus should be established on a consistent methodology to ensure diagnostic and prognostic consistency. Magn Reson Med 78:341-356, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Neurológicos , Algoritmos , Simulación por Computador , Módulo de Elasticidad/fisiología , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resistencia al Corte/fisiología , Estrés Mecánico
2.
Magn Reson Med ; 76(2): 645-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26417988

RESUMEN

PURPOSE: Magnetic resonance elastography (MRE) of the brain has demonstrated potential as a biomarker of neurodegenerative disease such as dementia but requires further evaluation. Cranial anatomical features such as the falx cerebri and tentorium cerebelli membranes may influence MRE measurements through wave reflection and interference and tissue heterogeneity at their boundaries. We sought to determine the influence of these effects via simulation. METHODS: MRE-associated mechanical stimulation of the brain was simulated using steady state harmonic finite element analysis. Simulations of geometrical models and anthropomorphic brain models derived from anatomical MRI data of healthy individuals were compared. Constitutive parameters were taken from MRE measurements for healthy brain. Viscoelastic moduli were reconstructed from the simulated displacement fields and compared with ground truth. RESULTS: Interference patterns from reflections and heterogeneity resulted in artifacts in the reconstructions of viscoelastic moduli. Artifacts typically occurred in the vicinity of boundaries between different tissues within the cranium, with a magnitude of 10%-20%. CONCLUSION: Given that MRE studies for neurodegenerative disease have reported only marginal variations in brain elasticity between controls and patients (e.g., 7% for Alzheimer's disease), the predicted errors are a potential confound to the development of MRE as a biomarker of dementia and other neurodegenerative diseases. Magn Reson Med 76:645-662, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Biológicos , Encéfalo/fisiología , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Front Radiol ; 4: 1386906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836218

RESUMEN

Introduction: This study is a retrospective evaluation of the performance of deep learning models that were developed for the detection of COVID-19 from chest x-rays, undertaken with the goal of assessing the suitability of such systems as clinical decision support tools. Methods: Models were trained on the National COVID-19 Chest Imaging Database (NCCID), a UK-wide multi-centre dataset from 26 different NHS hospitals and evaluated on independent multi-national clinical datasets. The evaluation considers clinical and technical contributors to model error and potential model bias. Model predictions are examined for spurious feature correlations using techniques for explainable prediction. Results: Models performed adequately on NHS populations, with performance comparable to radiologists, but generalised poorly to international populations. Models performed better in males than females, and performance varied across age groups. Alarmingly, models routinely failed when applied to complex clinical cases with confounding pathologies and when applied to radiologist defined "mild" cases. Discussion: This comprehensive benchmarking study examines the pitfalls in current practices that have led to impractical model development. Key findings highlight the need for clinician involvement at all stages of model development, from data curation and label definition, to model evaluation, to ensure that all clinical factors and disease features are appropriately considered during model design. This is imperative to ensure automated approaches developed for disease detection are fit-for-purpose in a clinical setting.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38502618

RESUMEN

Generating virtual organ populations that capture sufficient variability while remaining plausible is essential to conduct in silico trials (ISTs) of medical devices. However, not all anatomical shapes of interest are always available for each individual in a population. The imaging examinations and modalities used can vary between subjects depending on their individualized clinical pathways. Different imaging modalities may have various fields of view and are sensitive to signals from other tissues/organs, or both. Hence, missing/partially overlapping anatomical information is often available across individuals. We introduce a generative shape model for multipart anatomical structures, learnable from sets of unpaired datasets, i.e., where each substructure in the shape assembly comes from datasets with missing or partially overlapping substructures from disjoint subjects of the same population. The proposed generative model can synthesize complete multipart shape assemblies coined virtual chimeras (VCs). We applied this framework to build VCs from databases of whole-heart shape assemblies that each contribute samples for heart substructures. Specifically, we propose a graph neural network-based generative shape compositional framework, which comprises two components, a part-aware generative shape model that captures the variability in shape observed for each structure of interest in the training population and a spatial composition network that assembles/composes the structures synthesized by the former into multipart shape assemblies (i.e., VCs). We also propose a novel self-supervised learning scheme that enables the spatial composition network to be trained with partially overlapping data and weak labels. We trained and validated our approach using shapes of cardiac structures derived from cardiac magnetic resonance (MR) images in the UK Biobank (UKBB). When trained with complete and partially overlapping data, our approach significantly outperforms a principal component analysis (PCA)-based shape model (trained with complete data) in terms of generalizability and specificity. This demonstrates the superiority of the proposed method, as the synthesized cardiac virtual populations are more plausible and capture a greater degree of shape variability than those generated by the PCA-based shape model.

5.
Eur Heart J Imaging Methods Pract ; 2(1): qyae042, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39045211

RESUMEN

Aims: Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Cardiac image and mesh are two primary modalities to present the shape and structure of the heart and have been demonstrated to be efficient in CVD prediction and diagnosis. However, previous research has been generally focussed on a single modality (image or mesh), and few of them have tried to jointly consider the image and mesh representations of heart. To obtain efficient and explainable biomarkers for CVD prediction and diagnosis, it is needed to jointly consider both representations. Methods and results: We design a novel multi-channel variational auto-encoder, mesh-image variational auto-encoder, to learn joint representation of paired mesh and image. After training, the shape-aware image representation (SAIR) can be learned directly from the raw images and applied for further CVD prediction and diagnosis. We demonstrate our method on data from UK Biobank study and two other datasets via extensive experiments. In acute myocardial infarction prediction, SAIR achieves 81.43% accuracy, significantly higher than traditional biomarkers like metadata and clinical indices (left ventricle and right ventricle clinical indices of cardiac function like chamber volume, mass, and ejection fraction). Conclusion: Our mesh-image variational auto-encoder provides a novel approach for 3D cardiac mesh reconstruction from images. The extraction of SAIR is fast and without need of segmentation masks, and its focussing can be visualized in the corresponding cardiac meshes. SAIR archives better performance than traditional biomarkers and can be applied as an efficient supplement to them, which is of significant potential in CVD analysis.

6.
Front Radiol ; 4: 1339612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426080

RESUMEN

Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images. Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists. In this paper, we present a novel multi-modal deep neural network framework for generating chest x-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes. We introduce a conditioned cross-multi-head attention module to fuse these heterogeneous data modalities, bridging the semantic gap between visual and textual data. Experiments demonstrate substantial improvements from using additional modalities compared to relying on images alone. Notably, our model achieves the highest reported performance on the ROUGE-L metric compared to relevant state-of-the-art models in the literature. Furthermore, we employed both human evaluation and clinical semantic similarity measurement alongside word-overlap metrics to improve the depth of quantitative analysis. A human evaluation, conducted by a board-certified radiologist, confirms the model's accuracy in identifying high-level findings, however, it also highlights that more improvement is needed to capture nuanced details and clinical context.

7.
J Neurol ; 271(5): 2285-2297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430271

RESUMEN

BACKGROUND: Stroke is a leading cause of morbidity and mortality. Retinal imaging allows non-invasive assessment of the microvasculature. Consequently, retinal imaging is a technology which is garnering increasing attention as a means of assessing cardiovascular health and stroke risk. METHODS: A biomedical literature search was performed to identify prospective studies that assess the role of retinal imaging derived biomarkers as indicators of stroke risk. RESULTS: Twenty-four studies were included in this systematic review. The available evidence suggests that wider retinal venules, lower fractal dimension, increased arteriolar tortuosity, presence of retinopathy, and presence of retinal emboli are associated with increased likelihood of stroke. There is weaker evidence to suggest that narrower arterioles and the presence of individual retinopathy traits such as microaneurysms and arteriovenous nicking indicate increased stroke risk. Our review identified three models utilizing artificial intelligence algorithms for the analysis of retinal images to predict stroke. Two of these focused on fundus photographs, whilst one also utilized optical coherence tomography (OCT) technology images. The constructed models performed similarly to conventional risk scores but did not significantly exceed their performance. Only two studies identified in this review used OCT imaging, despite the higher dimensionality of this data. CONCLUSION: Whilst there is strong evidence that retinal imaging features can be used to indicate stroke risk, there is currently no predictive model which significantly outperforms conventional risk scores. To develop clinically useful tools, future research should focus on utilization of deep learning algorithms, validation in external cohorts, and analysis of OCT images.


Asunto(s)
Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Enfermedades de la Retina/diagnóstico por imagen , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología , Medición de Riesgo , Retina/diagnóstico por imagen , Retina/patología
8.
Nat Mach Intell ; 6(3): 291-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523678

RESUMEN

Recent genome-wide association studies have successfully identified associations between genetic variants and simple cardiac morphological parameters derived from cardiac magnetic resonance images. However, the emergence of large databases, including genetic data linked to cardiac magnetic resonance facilitates the investigation of more nuanced patterns of cardiac shape variability than those studied so far. Here we propose a framework for gene discovery coined unsupervised phenotype ensembles. The unsupervised phenotype ensemble builds a redundant yet highly expressive representation by pooling a set of phenotypes learnt in an unsupervised manner, using deep learning models trained with different hyperparameters. These phenotypes are then analysed via genome-wide association studies, retaining only highly confident and stable associations across the ensemble. We applied our approach to the UK Biobank database to extract geometric features of the left ventricle from image-derived three-dimensional meshes. We demonstrate that our approach greatly improves the discoverability of genes that influence left ventricle shape, identifying 49 loci with study-wide significance and 25 with suggestive significance. We argue that our approach would enable more extensive discovery of gene associations with image-derived phenotypes for other organs or image modalities.

9.
Med Image Anal ; 87: 102814, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37196537

RESUMEN

Despite success on multi-contrast MR image synthesis, generating specific modalities remains challenging. Those include Magnetic Resonance Angiography (MRA) that highlights details of vascular anatomy using specialised imaging sequences for emphasising inflow effect. This work proposes an end-to-end generative adversarial network that can synthesise anatomically plausible, high-resolution 3D MRA images using commonly acquired multi-contrast MR images (e.g. T1/T2/PD-weighted MR images) for the same subject whilst preserving the continuity of vascular anatomy. A reliable technique for MRA synthesis would unleash the research potential of very few population databases with imaging modalities (such as MRA) that enable quantitative characterisation of whole-brain vasculature. Our work is motivated by the need to generate digital twins and virtual patients of cerebrovascular anatomy for in-silico studies and/or in-silico trials. We propose a dedicated generator and discriminator that leverage the shared and complementary features of multi-source images. We design a composite loss function for emphasising vascular properties by minimising the statistical difference between the feature representations of the target images and the synthesised outputs in both 3D volumetric and 2D projection domains. Experimental results show that the proposed method can synthesise high-quality MRA images and outperform the state-of-the-art generative models both qualitatively and quantitatively. The importance assessment reveals that T2 and PD-weighted images are better predictors of MRA images than T1; and PD-weighted images contribute to better visibility of small vessel branches towards the peripheral regions. In addition, the proposed approach can generalise to unseen data acquired at different imaging centres with different scanners, whilst synthesising MRAs and vascular geometries that maintain vessel continuity. The results show the potential for use of the proposed approach to generating digital twin cohorts of cerebrovascular anatomy at scale from structural MR images typically acquired in population imaging initiatives.


Asunto(s)
Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador/métodos
10.
Insights Imaging ; 14(1): 165, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37782375

RESUMEN

OBJECTIVES: The study aim was to conduct a systematic review of the literature reporting the application of radiomics to imaging techniques in patients with ovarian lesions. METHODS: MEDLINE/PubMed, Web of Science, Scopus, EMBASE, Ovid and ClinicalTrials.gov were searched for relevant articles. Using PRISMA criteria, data were extracted from short-listed studies. Validity and bias were assessed independently by 2 researchers in consensus using the Quality in Prognosis Studies (QUIPS) tool. Radiomic Quality Score (RQS) was utilised to assess radiomic methodology. RESULTS: After duplicate removal, 63 articles were identified, of which 33 were eligible. Fifteen assessed lesion classifications, 10 treatment outcomes, 5 outcome predictions, 2 metastatic disease predictions and 1 classification/outcome prediction. The sample size ranged from 28 to 501 patients. Twelve studies investigated CT, 11 MRI, 4 ultrasound and 1 FDG PET-CT. Twenty-three studies (70%) incorporated 3D segmentation. Various modelling methods were used, most commonly LASSO (least absolute shrinkage and selection operator) (10/33). Five studies (15%) compared radiomic models to radiologist interpretation, all demonstrating superior performance. Only 6 studies (18%) included external validation. Five studies (15%) had a low overall risk of bias, 9 (27%) moderate, and 19 (58%) high risk of bias. The highest RQS achieved was 61.1%, and the lowest was - 16.7%. CONCLUSION: Radiomics has the potential as a clinical diagnostic tool in patients with ovarian masses and may allow better lesion stratification, guiding more personalised patient care in the future. Standardisation of the feature extraction methodology, larger and more diverse patient cohorts and real-world evaluation is required before clinical translation. CLINICAL RELEVANCE STATEMENT: Radiomics shows promising results in improving lesion stratification, treatment selection and outcome prediction. Modelling with larger cohorts and real-world evaluation is required before clinical translation. KEY POINTS: • Radiomics is emerging as a tool for enhancing clinical decisions in patients with ovarian masses. • Radiomics shows promising results in improving lesion stratification, treatment selection and outcome prediction. • Modelling with larger cohorts and real-world evaluation is required before clinical translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA