Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurooncol ; 164(1): 43-54, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37490233

RESUMEN

INTRODUCTION: Glioblastoma (GBM) is an aggressive primary brain cancer. Lack of effective therapy is related to its highly invasive nature. GBM invasion has been studied with reductionist systems that do not fully recapitulate the cytoarchitecture of the brain. We describe a human-derived brain organotypic model to study the migratory properties of GBM IDH-wild type ex vivo. METHODS: Non-tumor brain samples were obtained from patients undergoing surgery (n = 7). Organotypic brain slices were prepared, and green fluorescent protein (GFP)-labeled primary human GBM IDH-wild type cells (GBM276, GBM612, GBM965) were placed on the organotypic slice. Migration was evaluated via microscopy and immunohistochemistry. RESULTS: After placement, cells migrated towards blood vessels; initially migrating with limited directionality, sending processes in different directions, and increasing their speed upon contact with the vessel. Once merged, migration speed decreased and continued to decrease with time (p < 0.001). After perivascular localization, migration is limited along the blood vessels in both directions. The percentage of cells that contact blood vessels and then continue to migrate along the vessel was 92.5% (- 3.9/ + 2.9)% while the percentage of cells that migrate along the blood vessel and leave was 7.5% (- 2.9/ + 3.9) (95% CI, Clopper-Pearson (exact); n = 256 cells from six organotypic cultures); these percentages are significantly different from the random (50%) null hypothesis (z = 13.6; p < 10-7). Further, cells increase their speed in response to a decrease in oxygen tension from atmospheric normoxia (20% O2) to anoxia (1% O2) (p = 0.033). CONCLUSION: Human organotypic models can accurately study cell migration ex vivo. GBM IDH-wild type cells migrate toward the perivascular space in blood vessels and their migratory parameters change once they contact vascular structures and under hypoxic conditions. This model allows the evaluation of GBM invasion, considering the human brain microenvironment when cells are removed from their native niche after surgery.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Encéfalo/patología , Células Tumorales Cultivadas , Movimiento Celular/fisiología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Microambiente Tumoral
2.
J Chem Phys ; 154(11): 111105, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33752346

RESUMEN

Time-dependent diffusion behavior is probed over sub-millisecond timescales in a single shot using a nuclear magnetic resonance static gradient time-incremented echo train acquisition (SG-TIETA) framework. The method extends the Carr-Purcell-Meiboom-Gill cycle under a static field gradient by discretely incrementing the π-pulse spacings to simultaneously avoid off-resonance effects and probe a range of timescales (50-500 µs). Pulse spacings are optimized based on a derived ruleset. The remaining effects of pulse inaccuracy are examined and found to be consistent across pure liquids of different diffusivities: water, decane, and octanol-1. A pulse accuracy correction is developed. Instantaneous diffusivity, Dinst(t), curves (i.e., half of the time derivative of the mean-squared displacement in the gradient direction) are recovered from pulse accuracy-corrected SG-TIETA decays using a model-free log-linear least squares inversion method validated by Monte Carlo simulations. A signal-averaged 1-min experiment is described. A flat Dinst(t) is measured on pure dodecamethylcyclohexasiloxane, whereas decreasing Dinst(t) is measured on yeast suspensions, consistent with the expected short-time Dinst(t) behavior for confining microstructural barriers on the order of micrometers.

3.
Biophys J ; 119(12): 2378-2390, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189686

RESUMEN

We have developed a novel, to our knowledge, in vitro instrument that can deliver intermediate-frequency (100-400 kHz), moderate-intensity (up to and exceeding 6.5 V/cm pk-pk) electric fields (EFs) to cell and tissue cultures generated using induced electromagnetic fields (EMFs) in an air-core solenoid coil. A major application of these EFs is as an emerging cancer treatment modality. In vitro studies by Novocure reported that intermediate-frequency (100-300 kHz), low-amplitude (1-3 V/cm) EFs, which they called "tumor-treating fields (TTFields)," had an antimitotic effect on glioblastoma multiforme (GBM) cells. The effect was found to increase with increasing EF amplitude. Despite continued theoretical, preclinical, and clinical study, the mechanism of action remains incompletely understood. All previous in vitro studies of "TTFields" have used attached, capacitively coupled electrodes to deliver alternating EFs to cell and tissue cultures. This contacting delivery method suffers from a poorly characterized EF profile and conductive heating that limits the duration and amplitude of the applied EFs. In contrast, our device delivers EFs with a well-characterized radial profile in a noncontacting manner, eliminating conductive heating and enabling thermally regulated EF delivery. To test and demonstrate our system, we generated continuous, 200-kHz EMF with an EF amplitude profile spanning 0-6.5 V/cm pk-pk and applied them to exemplar human thyroid cell cultures for 72 h. We observed moderate reduction in cell density (<10%) at low EF amplitudes (<4 V/cm) and a greater reduction in cell density of up to 25% at higher amplitudes (4-6.5 V/cm). Our device can be readily extended to other EF frequency and amplitude regimes. Future studies with this device should contribute to the ongoing debate about the efficacy and mechanism(s) of action of "TTFields" by better isolating the effects of EFs and providing access to previously inaccessible EF regimes.


Asunto(s)
Terapia por Estimulación Eléctrica , Glioblastoma , Conductividad Eléctrica , Campos Electromagnéticos , Glioblastoma/terapia , Humanos
4.
Biophys J ; 117(7): 1167-1178, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31495447

RESUMEN

Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.


Asunto(s)
Traumatismos por Explosión , Lesiones Encefálicas , Dispositivos Laboratorio en un Chip , Resistencia al Corte , Estrés Mecánico , Explosiones , Humanos , Presión
5.
Am J Cancer Res ; 14(2): 562-584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455403

RESUMEN

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro, we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0-6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0-3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

6.
Genes Chromosomes Cancer ; 51(4): 353-74, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22161874

RESUMEN

Human carcinomas are defined by recurrent chromosomal aneuploidies, which result in a tissue-specific distribution of genomic imbalances. In order to develop models for these genome mutations and to determine their role in tumorigenesis, we generated 45 spontaneously transformed murine cell lines from normal epithelial cells derived from bladder, cervix, colon, kidney, lung, and mammary gland. Phenotypic changes, chromosomal aberrations, centrosome number, and telomerase activity were assayed in control uncultured cells and in three subsequent stages of transformation. Supernumerary centrosomes, binucleate cells, and tetraploidy were observed as early as 48 hr after explantation. In addition, telomerase activity increased throughout progression. Live-cell imaging revealed that failure of cytokinesis, not cell fusion, promoted genome duplication. Spectral karyotyping demonstrated that aneuploidy preceded immortalization, consisting predominantly of whole chromosome losses (4, 9, 12, 13, 16, and Y) and gains (1, 10, 15, and 19). After transformation, focal amplifications of the oncogenes Myc and Mdm2 were frequently detected. Fifty percent of the transformed lines resulted in tumors on injection into immunocompromised mice. The phenotypic and genomic alterations observed in spontaneously transformed murine epithelial cells recapitulated the aberration pattern observed during human carcinogenesis. The dominant aberration of these cell lines was the presence of specific chromosomal aneuploidies. We propose that our newly derived cancer models will be useful tools to dissect the sequential steps of genome mutations during malignant transformation, and also to identify cancer-specific genes, signaling pathways, and the role of chromosomal instability in this process.


Asunto(s)
Aneuploidia , Transformación Celular Neoplásica/genética , Inestabilidad Cromosómica/genética , Células Epiteliales/patología , Animales , Línea Celular Transformada , Células Epiteliales/metabolismo , Femenino , Genes myc , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Fenotipo , Proteínas Proto-Oncogénicas c-mdm2/genética
7.
PNAS Nexus ; 2(3): pgad056, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970182

RESUMEN

For its size, the brain is the most metabolically active organ in the body. Most of its energy demand is used to maintain stable homeostatic physiological conditions. Altered homeostasis and active states are hallmarks of many diseases and disorders. Yet there is currently no direct and reliable method to assess homeostasis and absolute basal activity of cells in the tissue noninvasively without exogenous tracers or contrast agents. We propose a novel low-field, high-gradient diffusion exchange nuclear magnetic resonance (NMR) method capable of directly measuring cellular metabolic activity via the rate constant for water exchange across cell membranes. Exchange rates are 140 ± 16 s - 1 under normal conditions in viable ex vivo neonatal mouse spinal cords. High repeatability across samples suggest that values are absolute and intrinsic to the tissue. Using temperature and drug (ouabain) perturbations, we find that the majority of water exchange is metabolically active and coupled to active transport by the sodium-potassium pump. We show that this water exchange rate is sensitive primarily to tissue homeostasis and provides distinct functional information. In contrast, the apparent diffusion coefficient (ADC) measured with submillisecond diffusion times is sensitive primarily to tissue microstructure but not activity. Water exchange appears independently regulated from microstructural and oxygenation changes reported by ADC and T 1 relaxation measurements in an oxygen-glucose deprivation model of stroke; exchange rates remain stable for 30-40 min before dropping to levels similar to the effect of ouabain and never completely recovering when oxygen and glucose are restored.

8.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36789415

RESUMEN

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

9.
Nature ; 442(7104): 823-6, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16799564

RESUMEN

The hope of developing new transplantation therapies for degenerative diseases is limited by inefficient stem cell growth and immunological incompatibility with the host. Here we show that Notch receptor activation induces the expression of the specific target genes hairy and enhancer of split 3 (Hes3) and Sonic hedgehog (Shh) through rapid activation of cytoplasmic signals, including the serine/threonine kinase Akt, the transcription factor STAT3 and mammalian target of rapamycin, and thereby promotes the survival of neural stem cells. In both murine somatic and human embryonic stem cells, these positive signals are opposed by a control mechanism that involves the p38 mitogen-activated protein kinase. Transient administration of Notch ligands to the brain of adult rats increases the numbers of newly generated precursor cells and improves motor skills after ischaemic injury. These data indicate that stem cell expansion in vitro and in vivo, two central goals of regenerative medicine, may be achieved by Notch ligands through a pathway that is fundamental to development and cancer.


Asunto(s)
Receptores Notch/metabolismo , Sistemas de Mensajero Secundario , Células Madre/citología , Células Madre/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Recuento de Células , Diferenciación Celular , División Celular , Supervivencia Celular , Células Cultivadas , Embrión de Mamíferos/citología , Humanos , Ligandos , Ratones , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Ratas , Medicina Regenerativa , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Front Phys ; 102022.
Artículo en Inglés | MEDLINE | ID: mdl-37063496

RESUMEN

Diffusion exchange spectroscopy (DEXSY) is a multidimensional NMR technique that can reveal how water molecules exchange between compartments within heterogeneous media, such as biological tissue. Data from DEXSY experiments is typically processed using numerical inverse Laplace transforms (ILTs) to produce a diffusion-diffusion spectrum. A tacit assumption of this ILT approach is that the signal behavior is Gaussian - i.e., the spin echo intensity decays exponentially with the degree of diffusion weighting. The assumptions that underlie Gaussian signal behavior may be violated, however, depending on the gradient strength applied and the sample under study. We argue that non-Gaussian signal behavior due to restrictions is to be expected in the study of biological tissue using diffusion NMR. Further, we argue that this signal behavior can produce confounding features in the diffusion-diffusion spectra obtained from numerical ILTs of DEXSY data - entangling the effects of restriction and exchange. Specifically, restricted signal behavior can result in broadening of peaks and in the appearance of illusory exchanging compartments with distributed diffusivities, which pearl into multiple peaks if not highly regularized. We demonstrate these effects on simulated data. That said, we suggest the use of features in the signal acquisition domain that can be used to rapidly probe exchange without employing an ILT. We also propose a means to characterize the non-Gaussian signal behavior due to restrictions within a sample using DEXSY measurements with a near zero mixing time or storage interval. We propose a combined acquisition scheme to independently characterize restriction and exchange with various DEXSY measurements, which we term Restriction and Exchange from Equally-weighted Double and Single Diffusion Encodings (REEDS-DE). We test this method on ex vivo neonatal mouse spinal cord - a sample consisting primarily of gray matter - using a low-field, static gradient NMR system. In sum, we highlight critical shortcomings of prevailing DEXSY analysis methods that conflate the effects of restriction and exchange, and suggest a viable experimental approach to disentangle them.

11.
J Magn Reson ; 317: 106782, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32679514

RESUMEN

Diffusion exchange spectroscopy (DEXSY) provides a means to isolate the signal attenuation associated with exchange from other sources of signal loss. With the total diffusion weighting b1+b2=bs held constant, DEXSY signals acquired with b1=0 or b2=0 have no exchange weighting, while a DEXSY signal acquired with b1=b2 has maximal exchange weighting. The exchange rate can be estimated by fitting a diffusion exchange model to signals acquired with variable mixing times. Conventionally, acquired signals are normalized by a signal with b1=0 and b2=0 to remove the decay due to spin-lattice relaxation. Instead, division by a signal with equal bs but b1=0 or b2=0 reduces spin-lattice relaxation weighting of the apparent exchange rate (AXR). Furthermore, apparent diffusion-weighted R1 relaxation rates can be estimated from non-exchange-weighted DEXSY signals. Estimated R1 values are utilized to remove signal decay due to spin-lattice relaxation from exchange-weighted signals, permitting a more precise estimate of AXR with less data. Data reduction methods are proposed and tested with regards to statistical accuracy and precision of AXR estimates on simulated and experimental data. Simulations show that the methods are capable of accurately measuring the ground-truth exchange rate. The methods remain accurate even when the assumption that DEXSY signals attenuate with b is violated, as occurs for restricted diffusion. Experimental data was collected from fixed neonatal mouse spinal cord samples at 25 and 7°C using the strong static magnetic field gradient produced by a single-sided permanent magnet (i.e., an NMR MOUSE). The most rapid method for exchange measurements requires only five data points (an 80 s experiment as implemented) and achieves a similar level of accuracy and precision to the baseline method using 44 data points. This represents a significant improvement in acquisition speed, overcoming a barrier which has limited the use of DEXSY on living specimen.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Medios de Contraste/química , Difusión , Diseño de Equipo , Gadolinio DTPA/química , Técnicas In Vitro , Espectroscopía de Resonancia Magnética/instrumentación , Ratones , Sensibilidad y Especificidad , Agua/química
12.
Elife ; 82019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31829935

RESUMEN

We develop magnetic resonance (MR) methods for real-time measurement of tissue microstructure and membrane permeability of live and fixed excised neonatal mouse spinal cords. Diffusion and exchange MR measurements are performed using the strong static gradient produced by a single-sided permanent magnet. Using tissue delipidation methods, we show that water diffusion is restricted solely by lipid membranes. Most of the diffusion signal can be assigned to water in tissue which is far from membranes. The remaining 25% can be assigned to water restricted on length scales of roughly a micron or less, near or within membrane structures at the cellular, organelle, and vesicle levels. Diffusion exchange spectroscopy measures water exchanging between membrane structures and free environments at 100 s-1.


Asunto(s)
Membrana Celular/ultraestructura , Imagen de Difusión por Resonancia Magnética/métodos , Membranas Intracelulares/ultraestructura , Espectroscopía de Resonancia Magnética/métodos , Médula Espinal/ultraestructura , Potenciales de Acción , Animales , Animales Recién Nacidos , Anisotropía , Células del Asta Anterior/fisiología , Agua Corporal , Detergentes/farmacología , Deuterio , Difusión , Imagen de Difusión por Resonancia Magnética/instrumentación , Diseño de Equipo , Espectroscopía de Resonancia Magnética/instrumentación , Lípidos de la Membrana/química , Ratones , Movimiento (Física) , Octoxinol/farmacología , Médula Espinal/efectos de los fármacos
13.
Methods Mol Biol ; 438: 31-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18369747

RESUMEN

Recent work shows that major developmental and clinical processes such as central nervous system regeneration and carcinogenesis involve stem cells (SCs) in the brain. In spite of this importance, the requirements of these SCs and their differentiated offspring (neurons, astrocytes, and oligodendrocytes) for survival and proper function are little understood. In vivo, the SCs themselves interact with their environment. This "SC niche" may be complex because it likely includes cells of the vascular and immune systems. The ability to maintain (1) and differentiate (1 -4) central nervous system (CNS) SCs in tissue culture where they can be pharmacologically or genetically (5) manipulated provides a powerful starting point for understanding their behavior. We present detailed information on the methods that permit CNS SCs to differentiate into functional neurons in tissue culture. Important aspects of the culture systems include (1) homogeneity, so that the input and output of a manipulation is known to involve the SC itself; (2) growth in monolayer to visualize and study individual SCs and their offspring; and (3) the use of fully defined culture components to exclude unknown factors from the culture. These conditions support the differentiation of functional, electrically active neurons. These methods allow cell growth and differentiation from normal adult and diseased tissue derived from both animal models and clinical samples. Ultimate validation of such a system comes from accurate prediction of in vivo effects, and the methods we present for CNS SC culture have also successfully predicted regenerative responses in the injured adult nervous system.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Neuronas/citología , Células Madre/citología , Animales , Supervivencia Celular , Criopreservación , Disección , Inmunohistoquímica , Ratones , Ratas
14.
Sci Rep ; 6: 25713, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27162174

RESUMEN

In a recent study of the pathophysiology of mild, blast-induced traumatic brain injury (bTBI) the exposure of dissociated, central nervous system (CNS) cells to simulated blast resulted in propagating waves of elevated intracellular Ca(2+). Here we show, in dissociated human CNS cultures, that these calcium waves primarily propagate through astrocyte-dependent, purinergic signaling pathways that are blocked by P2 antagonists. Human, compared to rat, astrocytes had an increased calcium response and prolonged calcium wave propagation kinetics, suggesting that in our model system rat CNS cells are less responsive to simulated blast. Furthermore, in response to simulated blast, human CNS cells have increased expressions of a reactive astrocyte marker, glial fibrillary acidic protein (GFAP) and a protease, matrix metallopeptidase 9 (MMP-9). The conjoint increased expression of GFAP and MMP-9 and a purinergic ATP (P2) receptor antagonist reduction in calcium response identifies both potential mechanisms for sustained changes in brain function following primary bTBI and therapeutic strategies targeting abnormal astrocyte activity.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio , Calcio/metabolismo , Sistema Nervioso Central/metabolismo , Animales , Traumatismos por Explosión , Células Cultivadas , Sistema Nervioso Central/citología , Explosiones , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos/metabolismo , Transducción de Señal , Estrés Mecánico
15.
Stem Cell Reports ; 4(1): 155-169, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25497455

RESUMEN

Many tumors are hierarchically organized with a minority cell population that has stem-like properties and enhanced ability to initiate tumorigenesis and drive therapeutic relapse. These cancer stem cells (CSCs) are typically identified by complex combinations of cell-surface markers that differ among tumor types. Here, we developed a flexible lentiviral-based reporter system that allows direct visualization of CSCs based on functional properties. The reporter responds to the core stem cell transcription factors OCT4 and SOX2, with further selectivity and kinetic resolution coming from use of a proteasome-targeting degron. Cancer cells marked by this reporter have the expected properties of self-renewal, generation of heterogeneous offspring, high tumor- and metastasis-initiating activity, and resistance to chemotherapeutics. With this approach, the spatial distribution of CSCs can be assessed in settings that retain microenvironmental and structural cues, and CSC plasticity and response to therapeutics can be monitored in real time.


Asunto(s)
Expresión Génica , Genes Reporteros , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos/farmacología , División Celular Asimétrica , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular/genética , Rastreo Celular , Transformación Celular Neoplásica/genética , Resistencia a Antineoplásicos/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Orden Génico , Vectores Genéticos , Xenoinjertos , Humanos , Inmunofenotipificación , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Elementos de Respuesta , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas
16.
PLoS One ; 7(6): e39421, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768078

RESUMEN

Blast-Induced Traumatic Brain Injury (bTBI) describes a spectrum of injuries caused by an explosive force that results in changes in brain function. The mechanism responsible for primary bTBI following a blast shockwave remains unknown. We have developed a pneumatic device that delivers shockwaves, similar to those known to induce bTBI, within a chamber optimal for fluorescence microscopy. Abrupt changes in pressure can be created with and without the presence of shear forces at the surface of cells. In primary cultures of human central nervous system cells, the cellular calcium response to shockwaves alone was negligible. Even when the applied pressure reached 15 atm, there was no damage or excitation, unless concomitant shear forces, peaking between 0.3 to 0.7 Pa, were present at the cell surface. The probability of cellular injury in response to a shockwave was low and cell survival was unaffected 20 hours after shockwave exposure.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Calcio/metabolismo , Explosiones , Presión , Resistencia al Corte , Células Cultivadas , Humanos , Microscopía , Reología
17.
Cell Stem Cell ; 3(6): 670-80, 2008 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19041783

RESUMEN

To realize the promise of stem cell biology, it is important to identify the precise time in the history of the cell when developmental potential is restricted. To achieve this goal, we developed a real-time imaging system that captures the transitions in fate, generating neurons, astrocytes, and oligodendrocytes from single CNS stem cells in vitro. In the presence of bFGF, tripotent cells normally produce specified progenitors through a bipotent intermediate cell type. Surprisingly, the tripotent state is reset at each passage. The cytokine CNTF is thought to instruct multipotent cells to an astrocytic fate. We demonstrate that CNTF both directs astrogliogenesis from tripotent cells, bypassing two of the three normal bipotent intermediates, and later promotes the expansion of specified astrocytic progenitors. These results show how discrete cell types emerge from a multipotent cell and provide a strong basis for future studies to determine the molecular basis of fate specification.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Sistema Nervioso Central/embriología , Células Madre Multipotentes/metabolismo , Neurogénesis/fisiología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Genes Reporteros/genética , Proteína Ácida Fibrilar de la Glía/genética , Citometría de Imagen/métodos , Microscopía por Video/métodos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ratas , Ratas Sprague-Dawley , Técnicas de Cultivo de Tejidos/métodos , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA