Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 20(20): 6154-61, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24700354

RESUMEN

New graphene oxide (GO)-tethered-Co(II) phthalocyanine complex [CoPc-GO] was synthesized by a stepwise procedure and demonstrated to be an efficient, cost-effective and recyclable photocatalyst for the reduction of carbon dioxide to produce methanol as the main product. The developed GO-immobilized CoPc was characterized by X-ray diffraction (XRD), FTIR, XPS, Raman, diffusion reflection UV/Vis spectroscopy, inductively coupled plasma atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). FTIR, XPS, Raman, UV/Vis and ICP-AES along with elemental analysis data showed that Co(II) -Pc complex was successfully grafted on GO. The prepared catalyst was used for the photocatalytic reduction of carbon dioxide by using water as a solvent and triethylamine as the sacrificial donor. Methanol was obtained as the major reaction product along with the formation of minor amount of CO (0.82 %). It was found that GO-grafted CoPc exhibited higher photocatalytic activity than homogeneous CoPc, as well as GO, and showed good recoverability without significant leaching during the reaction. Quantitative determination of methanol was done by GC flame-ionization detector (FID), and verification of product was done by NMR spectroscopy. The yield of methanol after 48 h of reaction by using GO-CoPc catalyst in the presence of sacrificial donor triethylamine was found to be 3781.8881 µmol g(-1) cat., and the conversion rate was found to be 78.7893 µmol g(-1) cat. h(-1). After the photoreduction experiment, the catalyst was easily recovered by filtration and reused for the subsequent recycling experiment without significant change in the catalytic efficiency.

2.
J Phys Chem B ; 110(28): 13812-8, 2006 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-16836328

RESUMEN

The effect of adsorbate molecules on the quadrupolar interaction of framework aluminum atoms with the electric field gradient in dehydrated zeolite H,Na-Y has been studied by (27)Al MAS NMR and (27)Al MQMAS NMR spectroscopy at magnetic fields of 9.4 and 17.6 T. Upon adsorption of molecules interacting with bridging OH groups by hydrogen bonds (acetonitrile and acetone), the quadrupole coupling constant of framework aluminum atoms was found to decrease from 16.0 MHz (unloaded zeolite) to 9.4 MHz. Adsorption of molecules, which cause a proton transfer from the zeolite framework to the adsorbates (ammonia and pyridine), reduces the quadrupole coupling constant to 3.8 MHz for coverages of 0.5-2 molecules per bridging OH group. The experiments indicate that the quadrupole coupling constant of framework aluminum atoms in dehydrated zeolite H,Na-Y reflects the chemical state of adsorbate complexes formed at bridging OH groups. In agreement with earlier investigations it was found that a proton affinity of the adsorbate molecules of PA = 812-854 kJ/mol is necessary to induce a proton transfer from the zeolite framework to the adsorbed compounds. This proton transfer is accompanied by a strong improvement of the tetrahedral symmetry of zeolitic framework AlO(4) tetrahedra and a decrease of the electric field gradient.

3.
Phys Chem Chem Phys ; 7(17): 3221-6, 2005 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16240035

RESUMEN

27Al spin-echo, high-speed MAS (nu(rot) = 30 kHz), and MQMAS NMR spectroscopy in magnetic fields of B0 = 9.4, 14.1, and 17.6 T were applied for the study of aluminum species at framework and extra-framework positions in non-hydrated zeolites Y. Non-hydrated gamma-Al2O3 and non-hydrated aluminum-exchanged zeolite Y (Al,Na-Y) and zeolite H,Na-Y were utilized as reference materials. The solid-state 27Al NMR spectra of steamed zeolite deH,Na-Y/81.5 were found to consist of four signals. The broad low-field signal is caused by a superposition of the signals of framework aluminum atoms in the vicinity of bridging hydroxyl protons and framework aluminum atoms compensated in their negative charge by aluminum cations (delta(iso) = 70 +/- 10 ppm, C(QCC) = 15.0 +/- 1.0 MHz). The second signal is due to a superposition of the signals of framework aluminum atoms compensated by sodium cations and tetrahedrally coordinated aluminum atoms in neutral extra-framework aluminum oxide clusters (delta(iso) = 65 +/- 5 ppm, C(QCC) = 8.0 +/- 0.5 MHz). The residual two signals were attributed to aluminum cations (delta(iso) = 35 +/- 5 ppm, C(QCC) = 7.5 +/- 0.5 MHz) and octahedrally coordinated aluminum atoms in neutral extra-framework aluminum oxide clusters (delta(iso) = 10 +/- 5 ppm, C(QCC) = 5.0 +/- 0.5 MHz). By chemical analysis and evaluating the relative solid-state 27Al NMR intensities of the different signals of aluminum species occurring in zeolite deH,Na-Y/81.5 in the non-hydrated state, the aluminum distribution in this material was determined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA