Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(18): e2212685120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094145

RESUMEN

Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed to stay close to real-life conditions. We found that a metabolomics approach optimized for either women or men under entrained conditions performed equally well or better than existing approaches using more labor-intensive RNA sequencing-based methods. Although estimation of circadian body time using blood-targeted metabolomics requires further validation in shift work and other real-world conditions, it currently may offer a robust, feasible technique with relatively high accuracy to aid personalized optimization of behavior and clinical treatment after appropriate validation in patient populations.


Asunto(s)
Cuerpo Humano , Melatonina , Masculino , Humanos , Femenino , Luz , Ritmo Circadiano/fisiología , Sueño/fisiología , Melatonina/metabolismo , Metabolómica
2.
Eur J Neurosci ; 51(1): 366-378, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30929284

RESUMEN

Disruption to sleep and circadian rhythms can impact on metabolism. The study aimed to investigate the effect of acute sleep deprivation on plasma melatonin, cortisol and metabolites, to increase understanding of the metabolic pathways involved in sleep/wake regulation processes. Twelve healthy young female participants remained in controlled laboratory conditions for ~92 hr with respect to posture, meals and environmental light (18:00-23:00 hr and 07:00-09:00 hr <8 lux; 23:00-07:00 hr 0 lux (sleep opportunity) or <8 lux (continuous wakefulness); 09:00-18:00 hr ~90 lux). Regular blood samples were collected for 70 hr for plasma melatonin and cortisol, and targeted liquid chromatography-mass spectrometry metabolomics. Timepoints between 00:00 and 06:00 hr for day 1 (baseline sleep), day 2 (sleep deprivation) and day 3 (recovery sleep) were analysed. Cosinor analysis and MetaCycle analysis were performed for detection of rhythmicity. Night-time melatonin levels were significantly increased during sleep deprivation and returned to baseline levels during recovery sleep. No significant differences were observed in cortisol levels. Of 130 plasma metabolites quantified, 41 metabolites were significantly altered across the study nights, with the majority decreasing during sleep deprivation, most notably phosphatidylcholines. In cosinor analysis, 58 metabolites maintained their rhythmicity across the study days, with the majority showing a phase advance during acute sleep deprivation. This observation differs to that previously reported for males. Our study is the first of metabolic profiling in females during sleep deprivation and recovery sleep, and offers a novel view of human sleep/wake regulation and sex differences.


Asunto(s)
Melatonina , Ritmo Circadiano , Femenino , Humanos , Hidrocortisona , Masculino , Sueño , Privación de Sueño
3.
Metabolomics ; 16(4): 50, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32285223

RESUMEN

INTRODUCTION: To generate biomarkers of target engagement or predictive response for multi-target drugs is challenging. One such compound is the multi-AGC kinase inhibitor AT13148. Metabolic signatures of selective signal transduction inhibitors identified in preclinical models have previously been confirmed in early clinical studies. This study explores whether metabolic signatures could be used as biomarkers for the multi-AGC kinase inhibitor AT13148. OBJECTIVES: To identify metabolomic changes of biomarkers of multi-AGC kinase inhibitor AT13148 in cells, xenograft / mouse models and in patients in a Phase I clinical study. METHODS: HILIC LC-MS/MS methods and Biocrates AbsoluteIDQ™ p180 kit were used for targeted metabolomics; followed by multivariate data analysis in SIMCA and statistical analysis in Graphpad. Metaboanalyst and String were used for network analysis. RESULTS: BT474 and PC3 cells treated with AT13148 affected metabolites which are in a gene protein metabolite network associated with Nitric oxide synthases (NOS). In mice bearing the human tumour xenografts BT474 and PC3, AT13148 treatment did not produce a common robust tumour specific metabolite change. However, AT13148 treatment of non-tumour bearing mice revealed 45 metabolites that were different from non-treated mice. These changes were also observed in patients at doses where biomarker modulation was observed. Further network analysis of these metabolites indicated enrichment for genes associated with the NOS pathway. The impact of AT13148 on the metabolite changes and the involvement of NOS-AT13148- Asymmetric dimethylarginine (ADMA) interaction were consistent with hypotension observed in patients in higher dose cohorts (160-300 mg). CONCLUSION: AT13148 affects metabolites associated with NOS in cells, mice and patients which is consistent with the clinical dose-limiting hypotension.


Asunto(s)
2-Hidroxifenetilamina/análogos & derivados , Antineoplásicos/metabolismo , Metabolómica , Óxido Nítrico Sintasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/metabolismo , 2-Hidroxifenetilamina/administración & dosificación , 2-Hidroxifenetilamina/metabolismo , 2-Hidroxifenetilamina/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Biomarcadores de Tumor/sangre , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Glucógeno Sintasa Quinasa 3 beta/sangre , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Óxido Nítrico Sintasa/metabolismo , Células PC-3 , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/administración & dosificación , Pirazoles/farmacología
4.
Anal Chem ; 91(22): 14407-14416, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31638379

RESUMEN

A challenge facing metabolomics in the analysis of large human cohorts is the cross-laboratory comparability of quantitative metabolomics measurements. In this study, 14 laboratories analyzed various blood specimens using a common experimental protocol provided with the Biocrates AbsoluteIDQ p400HR kit, to quantify up to 408 metabolites. The specimens included human plasma and serum from male and female donors, mouse and rat plasma, as well as NIST SRM 1950 reference plasma. The metabolite classes covered range from polar (e.g., amino acids and biogenic amines) to nonpolar (e.g., diacyl- and triacyl-glycerols), and they span 11 common metabolite classes. The manuscript describes a strict system suitability testing (SST) criteria used to evaluate each laboratory's readiness to perform the assay, and provides the SST Skyline documents for public dissemination. The study found approximately 250 metabolites were routinely quantified in the sample types tested, using Orbitrap instruments. Interlaboratory variance for the NIST SRM-1950 has a median of 10% for amino acids, 24% for biogenic amines, 38% for acylcarnitines, 25% for glycerolipids, 23% for glycerophospholipids, 16% for cholesteryl esters, 15% for sphingolipids, and 9% for hexoses. Comparing to consensus values for NIST SRM-1950, nearly 80% of comparable analytes demonstrated bias of <50% from the reference value. The findings of this study result in recommendations of best practices for system suitability, quality control, and calibration. We demonstrate that with appropriate controls, high-resolution metabolomics can provide accurate results with good precision across laboratories, and the p400HR therefore is a reliable approach for generating consistent and comparable metabolomics data.


Asunto(s)
Aminoácidos/sangre , Aminas Biogénicas/sangre , Análisis Químico de la Sangre/estadística & datos numéricos , Lipidómica/estadística & datos numéricos , Lípidos/sangre , Metabolómica/estadística & datos numéricos , Análisis de Varianza , Animales , Cromatografía Líquida de Alta Presión/estadística & datos numéricos , Agregación de Datos , Femenino , Humanos , Límite de Detección , Masculino , Espectrometría de Masas/estadística & datos numéricos , Metaboloma , Ratones , Ratas , Reproducibilidad de los Resultados
5.
Br J Cancer ; 116(9): 1166-1176, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28334731

RESUMEN

BACKGROUND: The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers. METHODS: To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116 cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment. RESULTS: CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models. Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model. CONCLUSIONS: CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to achieve tumour stasis or regression by CCT271850.


Asunto(s)
Proteínas de Ciclo Celular/genética , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Células HCT116 , Humanos , Ratones , Neoplasias/genética , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Xenobiotica ; 47(9): 771-777, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27618572

RESUMEN

1. We have previously described C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one derivatives as cell permeable inhibitors of the KDM4 and KDM5 subfamilies of JmjC histone lysine demethylases. 2. Although exemplar compound 1 exhibited moderate clearance in mouse liver microsomes, it was highly cleared in vivo due to metabolism by aldehyde oxidase (AO). Similar human and mouse AO-mediated metabolism was observed with the pyrido[3,4-d]pyrimidin-4(3H)-one scaffold and other C8-substituted derivatives. 3. We identified the C2-position as the oxidation site by LC-MS and 1H-NMR and showed that C2-substituted derivatives are no longer AO substrates. 4. In addition to the experimental data, these observations are supported by molecular modelling studies in the human AO protein crystal structure.


Asunto(s)
Aldehído Oxidasa/antagonistas & inhibidores , Pirimidinas/metabolismo , Animales , Humanos , Ratones , Modelos Moleculares , Espectroscopía de Protones por Resonancia Magnética , Relación Estructura-Actividad
7.
Proc Natl Acad Sci U S A ; 111(29): 10761-6, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002497

RESUMEN

Sleep restriction and circadian clock disruption are associated with metabolic disorders such as obesity, insulin resistance, and diabetes. The metabolic pathways involved in human sleep, however, have yet to be investigated with the use of a metabolomics approach. Here we have used untargeted and targeted liquid chromatography (LC)/MS metabolomics to examine the effect of acute sleep deprivation on plasma metabolite rhythms. Twelve healthy young male subjects remained in controlled laboratory conditions with respect to environmental light, sleep, meals, and posture during a 24-h wake/sleep cycle, followed by 24 h of wakefulness. Two-hourly plasma samples collected over the 48 h period were analyzed by LC/MS. Principal component analysis revealed a clear time of day variation with a significant cosine fit during the wake/sleep cycle and during 24 h of wakefulness in untargeted and targeted analysis. Of 171 metabolites quantified, daily rhythms were observed in the majority (n = 109), with 78 of these maintaining their rhythmicity during 24 h of wakefulness, most with reduced amplitude (n = 66). During sleep deprivation, 27 metabolites (tryptophan, serotonin, taurine, 8 acylcarnitines, 13 glycerophospholipids, and 3 sphingolipids) exhibited significantly increased levels compared with during sleep. The increased levels of serotonin, tryptophan, and taurine may explain the antidepressive effect of acute sleep deprivation and deserve further study. This report, to our knowledge the first of metabolic profiling during sleep and sleep deprivation and characterization of 24 h rhythms under these conditions, offers a novel view of human sleep/wake regulation.


Asunto(s)
Metaboloma , Privación de Sueño/metabolismo , Humanos , Masculino , Metabolómica , Análisis Multivariante , Análisis de Componente Principal , Privación de Sueño/sangre
8.
Chemistry ; 22(16): 5657-64, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26929153

RESUMEN

The 2,11-cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran-based compounds designed to augment a typical medicinal chemistry library screen. Ring-closing metathesis, lactonisation and SmI2 -mediated methods were exemplified and applied to the installation of a third ring to mimic the nine-membered ring of the 2,11-cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical-space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library. Preliminary investigations in cancer cells showed that the simpler scaffolds could recapitulate the reported anti-migratory activity of the natural products.


Asunto(s)
Benzofuranos/química , Productos Biológicos/síntesis química , Diterpenos/síntesis química , Lactonas/química , Bibliotecas de Moléculas Pequeñas/química , Productos Biológicos/química , Química Farmacéutica , Diterpenos/química
9.
Bioorg Med Chem Lett ; 26(5): 1443-51, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26852363

RESUMEN

Here we describe the discovery and optimization of 3-benzylindazoles as potent and selective inhibitors of CDK8, also modulating CDK19, discovered from a high-throughput screening (HTS) campaign sampling the Merck compound collection. The primary hits with strong HSP90 affinity were subsequently optimized to potent and selective CDK8 inhibitors which demonstrate inhibition of WNT pathway activity in cell-based assays. X-ray crystallographic data demonstrated that 3-benzylindazoles occupy the ATP binding site of CDK8 and adopt a Type I binding mode. Medicinal chemistry optimization successfully led to improved potency, physicochemical properties and oral pharmacokinetics. Modulation of phospho-STAT1, a pharmacodynamic biomarker of CDK8, was demonstrated in an APC-mutant SW620 human colorectal carcinoma xenograft model following oral administration.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/metabolismo , Indazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Neoplasias Colorrectales/metabolismo , Cristalografía por Rayos X , Quinasa 8 Dependiente de Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Indazoles/administración & dosificación , Indazoles/química , Ratones , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Ratas , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Bioorg Med Chem Lett ; 25(19): 4203-9, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26296477

RESUMEN

Introduction of a 1-benzyl-1H-pyrazol-4-yl moiety at C7 of the imidazo[4,5-b]pyridine scaffold provided 7a which inhibited a range of kinases including Aurora-A. Modification of the benzyl group in 7a, and subsequent co-crystallisation of the resulting analogues with Aurora-A indicated distinct differences in binding mode dependent upon the pyrazole N-substituent. Compounds 7a and 14d interact with the P-loop whereas 14a and 14b engage with Thr217 in the post-hinge region. These crystallographic insights provide options for the design of compounds interacting with the DFG motif or with Thr217.


Asunto(s)
Aurora Quinasas/antagonistas & inhibidores , Aurora Quinasas/química , Imidazoles/síntesis química , Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/síntesis química , Pirazoles/farmacología , Piridinas/síntesis química , Piridinas/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalización , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/química , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Estructura Molecular , Pirazoles/química , Piridinas/química , Relación Estructura-Actividad
11.
Proc Natl Acad Sci U S A ; 109(20): E1267-76, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22529373

RESUMEN

We have previously demonstrated an increased DNA copy number and expression of IGF1R to be associated with poor outcome in Wilms tumors. We have now tested whether inhibiting this receptor may be a useful therapeutic strategy by using a panel of Wilms tumor cell lines. Both genetic and pharmacological targeting resulted in inhibition of downstream signaling through PI3 and MAP kinases, G(1) cell cycle arrest, and cell death, with drug efficacy dependent on the levels of phosphorylated IGF1R. These effects were further associated with specific gene expression signatures reflecting pathway inhibition, and conferred synergistic chemosensitisation to doxorubicin and topotecan. In the in vivo setting, s.c. xenografts of WiT49 cells resembled malignant rhabdoid tumors rather than Wilms tumors. Treatment with an IGF1R inhibitor (NVP-AEW541) showed no discernable antitumor activity and no downstream pathway inactivation. By contrast, Wilms tumor cells established orthotopically within the kidney were histologically accurate and exhibited significantly elevated insulin-like growth factor-mediated signaling, and growth was significantly reduced on treatment with NVP-AEW541 in parallel with signaling pathway ablation. As a result of the paracrine effects of enhanced IGF2 expression in Wilms tumor, this disease may be acutely dependent on signaling through the IGF1 receptor, and thus treatment strategies aimed at its inhibition may be useful in the clinic. Such efficacy may be missed if only standard ectopic models are considered as a result of an imperfect recapitulation of the specific tumor microenvironment.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Renales/fisiopatología , Transducción de Señal/fisiología , Tumor de Wilms/fisiopatología , Análisis de Varianza , Animales , Línea Celular Tumoral , Electroquímica , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Imagen por Resonancia Magnética , Ratones , Comunicación Paracrina/fisiología , Fosforilación , Pirimidinas/farmacología , Pirroles/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Trasplante Heterólogo
12.
J Med Chem ; 67(2): 1061-1078, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38198226

RESUMEN

Hedgehog signaling is involved in embryonic development and cancer growth. Functional activity of secreted Hedgehog signaling proteins is dependent on N-terminal palmitoylation, making the palmitoyl transferase Hedgehog acyltransferase (HHAT), a potential drug target and a series of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines have been identified as HHAT inhibitors. Based on structural data, we designed and synthesized 37 new analogues which we profiled alongside 13 previously reported analogues in enzymatic and cellular assays. Our results show that a central amide linkage, a secondary amine, and (R)-configuration at the 4-position of the core are three key factors for inhibitory potency. Several potent analogues with low- or sub-µM IC50 against purified HHAT also inhibit Sonic Hedgehog (SHH) palmitoylation in cells and suppress the SHH signaling pathway. This work identifies IMP-1575 as the most potent cell-active chemical probe for HHAT function, alongside an inactive control enantiomer, providing tool compounds for validation of HHAT as a target in cellular assays.


Asunto(s)
Proteínas Hedgehog , Proteínas Hedgehog/metabolismo , Piridinas/química , Piridinas/farmacología
14.
J Med Chem ; 66(8): 5907-5936, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017629

RESUMEN

CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Factores de Transcripción/metabolismo , Neoplasias Ováricas/patología , Línea Celular Tumoral , Antineoplásicos/farmacología
15.
J Med Chem ; 66(8): 5892-5906, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37026591

RESUMEN

B-cell lymphoma 6 (BCL6) is a transcriptional repressor and oncogenic driver of diffuse large B-cell lymphoma (DLBCL). Here, we report the optimization of our previously reported tricyclic quinolinone series for the inhibition of BCL6. We sought to improve the cellular potency and in vivo exposure of the non-degrading isomer, CCT373567, of our recently published degrader, CCT373566. The major limitation of our inhibitors was their high topological polar surface areas (TPSA), leading to increased efflux ratios. Reducing the molecular weight allowed us to remove polarity and decrease TPSA without considerably reducing solubility. Careful optimization of these properties, as guided by pharmacokinetic studies, led to the discovery of CCT374705, a potent inhibitor of BCL6 with a good in vivo profile. Modest in vivo efficacy was achieved in a lymphoma xenograft mouse model after oral dosing.


Asunto(s)
Linfoma de Células B Grandes Difuso , Quinolonas , Animales , Humanos , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-6/química , Factores de Transcripción
16.
Sci Rep ; 12(1): 1008, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046467

RESUMEN

Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.


Asunto(s)
Aminoácidos/sangre , Ritmo Circadiano/fisiología , Neoplasias Mamarias Experimentales/fisiopatología , Neoplasias de la Mama Triple Negativas/fisiopatología , Aminoácidos/metabolismo , Animales , Neoplasias de la Mama/fisiopatología , Línea Celular , Línea Celular Tumoral , Femenino , Humanos , Ratones , Trasplante de Neoplasias , Proyectos Piloto
17.
Mol Oncol ; 16(6): 1272-1289, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34850536

RESUMEN

Rhabdomyosarcomas are aggressive pediatric soft-tissue sarcomas and include high-risk PAX3-FOXO1 fusion-gene-positive cases. Fibroblast growth factor receptor 4 (FGFR4) is known to contribute to rhabdomyosarcoma progression; here, we sought to investigate the involvement and potential for therapeutic targeting of other FGFRs in this disease. Cell-based screening of FGFR inhibitors with potential for clinical repurposing (NVP-BGJ398, nintedanib, dovitinib, and ponatinib) revealed greater sensitivity of fusion-gene-positive versus fusion-gene-negative rhabdomyosarcoma cell lines and was shown to be correlated with high expression of FGFR2 and its specific ligand, FGF7. Furthermore, patient samples exhibit higher mRNA levels of FGFR2 and FGF7 in fusion-gene-positive versus fusion-gene-negative rhabdomyosarcomas. Sustained intracellular mitogen-activated protein kinase (MAPK) activity and FGF7 secretion into culture media during serum starvation of PAX3-FOXO1 rhabdomyosarcoma cells together with decreased cell viability after genetic silencing of FGFR2 or FGF7 was in keeping with a novel FGF7-FGFR2 autocrine loop. FGFR inhibition with NVP-BGJ398 reduced viability and was synergistic with SN38, the active metabolite of irinotecan. In vivo, NVP-BGJ398 abrogated xenograft growth and warrants further investigation in combination with irinotecan as a therapeutic strategy for fusion-gene-positive rhabdomyosarcomas.


Asunto(s)
Comunicación Autocrina , Rabdomiosarcoma , Línea Celular Tumoral , Niño , Resistencia a Antineoplásicos , Factor 7 de Crecimiento de Fibroblastos , Humanos , Irinotecán , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética
18.
Cancer Discov ; 12(2): 416-431, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34551970

RESUMEN

Somatic mutations in ACVR1 are found in a quarter of children with diffuse intrinsic pontine glioma (DIPG), but there are no ACVR1 inhibitors licensed for the disease. Using an artificial intelligence-based platform to search for approved compounds for ACVR1-mutant DIPG, the combination of vandetanib and everolimus was identified as a possible therapeutic approach. Vandetanib, an inhibitor of VEGFR/RET/EGFR, was found to target ACVR1 (K d = 150 nmol/L) and reduce DIPG cell viability in vitro but has limited ability to cross the blood-brain barrier. In addition to mTOR, everolimus inhibited ABCG2 (BCRP) and ABCB1 (P-gp) transporters and was synergistic in DIPG cells when combined with vandetanib in vitro. This combination was well tolerated in vivo and significantly extended survival and reduced tumor burden in an orthotopic ACVR1-mutant patient-derived DIPG xenograft model. Four patients with ACVR1-mutant DIPG were treated with vandetanib plus an mTOR inhibitor, informing the dosing and toxicity profile of this combination for future clinical studies. SIGNIFICANCE: Twenty-five percent of patients with the incurable brainstem tumor DIPG harbor somatic activating mutations in ACVR1, but there are no approved drugs targeting the receptor. Using artificial intelligence, we identify and validate, both experimentally and clinically, the novel combination of vandetanib and everolimus in these children based on both signaling and pharmacokinetic synergies.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Receptores de Activinas Tipo I/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Everolimus/uso terapéutico , Glioma/tratamiento farmacológico , Piperidinas/uso terapéutico , Quinazolinas/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias del Tronco Encefálico/mortalidad , Niño , Preescolar , Reposicionamiento de Medicamentos , Everolimus/administración & dosificación , Femenino , Glioma/mortalidad , Humanos , Masculino , Ratones , Ratones SCID , Piperidinas/administración & dosificación , Quinazolinas/administración & dosificación , Ratas , Resultado del Tratamiento
19.
J Med Chem ; 65(12): 8191-8207, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35653645

RESUMEN

The transcriptional repressor BCL6 is an oncogenic driver found to be deregulated in lymphoid malignancies. Herein, we report the optimization of our previously reported benzimidazolone molecular glue-type degrader CCT369260 to CCT373566, a highly potent probe suitable for sustained depletion of BCL6 in vivo. We observed a sharp degradation SAR, where subtle structural changes conveyed the ability to induce degradation of BCL6. CCT373566 showed modest in vivo efficacy in a lymphoma xenograft mouse model following oral dosing.


Asunto(s)
Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Animales , Humanos , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
20.
J Med Chem ; 65(12): 8169-8190, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35657291

RESUMEN

To identify new chemical series with enhanced binding affinity to the BTB domain of B-cell lymphoma 6 protein, we targeted a subpocket adjacent to Val18. With no opportunities for strong polar interactions, we focused on attaining close shape complementarity by ring fusion onto our quinolinone lead series. Following exploration of different sized rings, we identified a conformationally restricted core which optimally filled the available space, leading to potent BCL6 inhibitors. Through X-ray structure-guided design, combined with efficient synthetic chemistry to make the resulting novel core structures, a >300-fold improvement in activity was obtained by the addition of seven heavy atoms.


Asunto(s)
Dominio BTB-POZ , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA