Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(2): 573-589, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897092

RESUMEN

The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.


Asunto(s)
Cromatina , Saccharum , Succinatos , Saccharum/genética , Saccharum/metabolismo , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Fitomejoramiento , Genómica , Poliploidía
2.
Pflugers Arch ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38396259

RESUMEN

Transmembrane prolyl 4-hydroxylase (P4H-TM) is an enigmatic enzyme whose cellular function and primary substrate remain to be identified. Its loss-of-function mutations cause a severe neurological HIDEA syndrome with hypotonia, intellectual disability, dysautonomia and hypoventilation. Previously, P4H-TM deficiency in mice was associated with reduced atherogenesis and lower serum triglyceride levels. Here, we characterized the glucose and lipid metabolism of P4h-tm-/- mice in physiological and tissue analyses. P4h-tm-/- mice showed variations in 24-h oscillations of energy expenditure, VO2 and VCO2 and locomotor activity compared to wild-type (WT) mice. Their rearing activity was reduced, and they showed significant muscle weakness and compromised coordination. Sedated P4h-tm-/- mice had better glucose tolerance, lower fasting insulin levels, higher fasting lactate levels and lower fasting free fatty acid levels compared to WT. These alterations were not present in conscious P4h-tm-/- mice. Fasted P4h-tm-/- mice presented with faster hepatic glycogenolysis. The respiratory rate of conscious P4h-tm-/- mice was significantly lower compared to the WT, the decrease being further exacerbated by sedation and associated with acidosis and a reduced ventilatory response to both hypoxia and hypercapnia. P4H-TM deficiency in mice is associated with alterations in whole-body energy metabolism, day-night rhythm of activity, glucose homeostasis and neuromuscular and respiratory functions. Although the underlying mechanism(s) are not yet fully understood, the phenotype appears to have neurological origins, controlled by brain and central nervous system circuits. The phenotype of P4h-tm-/- mice recapitulates some of the symptoms of HIDEA patients, making this mouse model a valuable tool to study and develop tailored therapies.

3.
J Exp Bot ; 75(10): 3040-3053, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38310636

RESUMEN

Sugarcane (Saccharum spp.), a leading sugar and energy crop, is seriously impacted by drought stress. However, the molecular mechanisms underlying sugarcane drought resistance, especially the functions of epigenetic regulators, remain elusive. Here, we show that a S. spontaneum KDM4/JHDM3 group JmjC protein, SsJMJ4, negatively regulates drought-stress responses through its H3K27me3 demethylase activity. Ectopic overexpression of SsJMJ4 in Arabidopsis reduced drought resistance possibly by promoting expression of AtWRKY54 and AtWRKY70, encoding two negative regulators of drought stress. SsJMJ4 directly bound to AtWRKY54 and AtWRKY70, and reduced H3K27me3 levels at these loci to ensure their proper transcription under normal conditions. Drought stress down-regulated both transcription and protein abundance of SsJMJ4, which was correlated with the reduced occupancy of SsJMJ4 at AtWRKY54 and AtWRKY70 chromatin, increased H3K27me3 levels at these loci, as well as reduced transcription levels of these genes. In S. spontaneum, drought stress-repressed transcription of SsWRKY122, an ortholog of AtWRKY54 and AtWRKY70, was associated with increased H3K27me3 levels at these loci. Transient overexpression of SsJMJ4 in S. spontaneum protoplasts raised transcription of SsWRKY122, paralleled with reduced H3K27me3 levels at its loci. These results suggest that the SsJMJ4-mediated dynamic deposition of H3K27me3 is required for an appropriate response to drought stress.


Asunto(s)
Sequías , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/fisiología , Saccharum/metabolismo , Saccharum/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Histonas/genética
4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256160

RESUMEN

Obesity is a risk factor for cardiometabolic diseases. Nutrients stimulate GLP-1 release; however, GLP-1 has a short half-life (<2 min), and only <10-15% reaches the systemic circulation. Human L-cells are localized in the distal ileum and colon, while most nutrients are absorbed in the proximal intestine. We hypothesized that combinations of amino acids and fatty acids potentiate GLP-1 release via different L-cell receptors. GLP-1 secretion was studied in the mouse enteroendocrine STC-1 cells. Cells were pre-incubated with buffer for 1 h and treated with nutrients: alpha-linolenic acid (αLA), phenylalanine (Phe), tryptophan (Trp), and their combinations αLA+Phe and αLA+Trp with dipeptidyl peptidase-4 (DPP4) inhibitor. After 1 h GLP-1 in supernatants was measured and cell lysates taken for qPCR. αLA (12.5 µM) significantly stimulated GLP-1 secretion compared with the control. Phe (6.25-25 mM) and Trp (2.5-10 mM) showed a clear dose response for GLP-1 secretion. The combination of αLA (6.25 µM) and either Phe (12.5 mM) or Trp (5 mM) significantly increased GLP-1 secretion compared with αLA, Phe, or Trp individually. The combination of αLA and Trp upregulated GPR120 expression and potentiated GLP-1 secretion. These nutrient combinations could be used in sustained-delivery formulations to the colon to prolong GLP-1 release for diminishing appetite and preventing obesity.


Asunto(s)
Aminoácidos , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Animales , Ratones , Células L , Triptófano , Antivirales , Péptido 1 Similar al Glucagón/farmacología , Hipoglucemiantes , Nutrientes , Obesidad
5.
BMC Genomics ; 24(1): 726, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041011

RESUMEN

BACKGROUND: Pre-exposing plants to abiotic stresses can induce stress memory, which is crucial for adapting to subsequent stress exposure. Although numerous genes involved in salt stress response have been identified, the understanding of memory responses to salt stress remains limited. RESULTS: In this study, we conducted physiological and transcriptional assays on maize plants subjected to recurrent salt stress to characterize salt stress memory. During the second exposure to salt stress, the plants exhibited enhanced salt resistance, as evidenced by increased proline content and higher POD and SOD activity, along with decreased MDA content, indicative of physiological memory behavior. Transcriptional analysis revealed fewer differentially expressed genes and variations in response processes during the second exposure compared to the first, indicative of transcriptional memory behavior. A total of 2,213 salt stress memory genes (SMGs) were identified and categorized into four response patterns. The most prominent group of SMGs consisted of genes with elevated expression during the first exposure to salt stress but reduced expression after recurrent exposure to salt stress, or vice versa ([+ / -] or [- / +]), indicating that a revised response is a crucial process in plant stress memory. Furthermore, nine transcription factors (TFs) (WRKY40, WRKY46, WRKY53, WRKY18, WRKY33, WRKY70, MYB15, KNAT7, and WRKY54) were identified as crucial factors related to salt stress memory. These TFs regulate over 53% of SMGs, underscoring their potential significance in salt stress memory. CONCLUSIONS: Our study demonstrates that maize can develop salt stress memory, and the genes identified here will aid in the genetic improvement of maize and other crops.


Asunto(s)
Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
6.
Funct Integr Genomics ; 23(3): 217, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392308

RESUMEN

Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.


Asunto(s)
Fabaceae , Animales , Fabaceae/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Agricultura , Insectos/genética
7.
J Nutr ; 153(2): 459-469, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36894239

RESUMEN

BACKGROUND: Low-carbohydrate high-fat (LCHF) diets may suppress the increase in appetite otherwise seen after diet-induced fat loss. However, studies of diets without severe energy restriction are lacking, and the effects of carbohydrate quality relative to quantity have not been directly compared. OBJECTIVES: To evaluated short- (3 mo) and long-term (12 mo) changes in fasting plasma concentrations of total ghrelin, ß-hydroxybutyrate (ßHB), and subjective feelings of appetite on 3 isocaloric eating patterns within a moderate caloric range (2000-2500 kcal/d) and with varying carbohydrate quality or quantity. METHODS: We performed a randomized controlled trial of 193 adults with obesity, comparing eating patterns based on "acellular" carbohydrate sources (e.g., flour-based whole-grain products; comparator arm), "cellular" carbohydrate sources (minimally processed foods with intact cellular structures), or LCHF principles. Outcomes were compared by an intention-to-treat analysis using constrained linear mixed modeling. This trial was registered at clinicaltrials.gov as NCT03401970. RESULTS: Of the 193 adults, 118 (61%) and 57 (30%) completed 3 and 12 mo of follow-up. Throughout the intervention, intakes of protein and energy were similar with all 3 eating patterns, with comparable reductions in body weight (5%-7%) and visceral fat volume (12%-17%) after 12 mo. After 3 mo, ghrelin increased significantly with the acellular (mean: 46 pg/mL; 95% CI: 11, 81) and cellular (mean: 54 pg/mL; 95% CI: 21, 88) diets but not with the LCHF diet (mean: 11 pg/mL; 95% CI: -16, 38). Although ßHB increased significantly more with the LCHF diet than with the acellular diet after 3 m (mean: 0.16 mmol/L; 95% CI: 0.09, 0.24), this did not correspond to a significant group difference in ghrelin (unless the 2 high-carbohydrate groups were combined [mean: -39.6 pg/mL; 95% CI: -76, -3.3]). No significant between-group differences were seen in feelings of hunger. CONCLUSIONS: Modestly energy-restricted isocaloric diets differing in carbohydrate cellularity and amount showed no significant differences in fasting total ghrelin or subjective hunger feelings. An increase in ketones with the LCHF diet to 0.3-0.4 mmol/L was insufficient to substantially curb increases in fasting ghrelin during fat loss.


Asunto(s)
Apetito , Ghrelina , Adulto , Humanos , Cetonas/farmacología , Carbohidratos de la Dieta/farmacología , Ingestión de Energía , Obesidad , Dieta con Restricción de Grasas
8.
Saudi Pharm J ; 31(1): 96-109, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685303

RESUMEN

Honey bee venom (BV) is a valuable product, and has a wide range of biological effects, and its use is rapidly increasing in apitherapy. Therefore, the current study, we reviewed the existing knowledge about BV composition and its numerous pharmacological properties for future research and use. Honey bee venom or apitoxin is produced in the venom gland in the honey bee abdomen. Adult bees use it as a primary colony defense mechanism. It is composed of many biologically active substances including peptides, enzymes, amines, amino acids, phospholipids, minerals, carbohydrates as well as some volatile components. Melittin and phospholipase A2 are the most important components of BV, having anti-cancer, antimicrobial, anti-inflammatory, anti-arthritis, anti-nociceptive and other curative potentials. Therefore, in medicine, BV has been used for centuries against different diseases like arthritis, rheumatism, back pain, and various inflammatory infections. Nowadays, BV or its components separately, are used for the treatment of various diseases in different countries as a natural medicine with limited side effects. Consequently, scientists as well as several pharmaceutical companies are trying to get a new understanding about BV, its substances and its activity for more effective use of this natural remedy in modern medicine.

9.
Saudi Pharm J ; 31(1): 85-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685298

RESUMEN

There has been a substantial and consistent rise in the number of clinical trials to develop advanced and potent bispecific antibodies (BsAb) over the past two decades with multiple targets to improve the efficacy or tissue specificity of monoclonal antibodies (mAb) treatment for diseases with multiple determining factors or widely-expressed targets. In this study, we designed and synthesized BsAb AGR2xPD1 targeting extracellular AGR2, a paracrine signal, and PD1, an immune checkpoint protein. Our design is intended to use AGR2 binding to guide PD1 targeting for AGR2+cancer. We used this construction to produce AGR2xPD1 BsAb by generating clonally selected stable 293F cell line with high expression. Applying this BsAb in a T cell-Tumor cell co-culture system showed that targeting both PD1 and AGR2 with this BsAb induces the attachment of TALL-104 (CD8+ T-lymphocytes) cells onto co-cultured H460 AGR2+ Lung tumor cells and significantly reduces migration of H460 cells. T-cell expression of CD8 and IFNγ is also synergistically enhanced by the AGR2xPD1 BsAb treatment in the AGR2+H460 co-culture system. These effects are significantly reduced with AGR2 expression negative WI38 cells. Our results demonstrate that the AGR2xPD1 BsAb could be a potential therapeutic agent to provide better solid tumor targeting and synergetic efficacy for treating AGR2+ cancer by blocking AGR2 paracrine signaling to reduce tumor survival, and redirecting cytotoxic T-cells into AGR2+ cancer cells.

10.
Biochem Biophys Res Commun ; 637: 358-364, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35595575

RESUMEN

Hemophilia A is a bleeding disorder caused by quantitative or qualitative deficiencies in coagulation factor VIII (FVIII). Low FVIII expression due to its unstable mRNA and binding with immunoglobulin-binding protein (BiP) compromises gene therapy endeavors in hemophilia A. Site-directed mutagenesis have demonstrated an improvement in the expression of FVIII proteins. In this study, a targeted point mutation of Pro at position 290 to Thr (P290T) enhances the in vitro specific activity of B-domain-deleted factor VIII (BDD-FVIII). Hydrodynamic gene delivery of P290T cDNA into FVIII-deficient (FVIII-/-) mice corrected bleeding symptoms. P290T variant resulted in high plasma FVIII coagulant activity 24 h post-gene delivery. Furthermore, bleeding time and average blood loss was significantly reduced in FVIII-/- mice injected with P290T variant, whereas BDD-FVIII and PBS-injected mice experienced prolonged bleeding and excessive blood loss. Histological analysis of the liver biopsies revealed no apparent signs of liver damage. No signs of potential toxicity were seen in mice following mice bodyweights assessment. Altogether, our results demonstrate that the introduction of P290T mutation increases both in vitro and in vivo FVIII coagulant activity, supporting ongoing efforts to develop more effective replacement therapy for hemophilia A.


Asunto(s)
Coagulantes , Hemofilia A , Animales , Ratones , Modelos Animales de Enfermedad , Factor VIII/genética , Factor VIII/uso terapéutico , Terapia Genética/métodos , Hemofilia A/genética , Hemofilia A/terapia , Hemorragia
11.
Mol Biol Rep ; 49(9): 8977-8985, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35429317

RESUMEN

Plants are subjected to biotic and abiotic stresses regularly, which irreparably harm agricultural production. Eco-friendly and sustainable technology to deal with this challenge is to breed abiotic stress tolerant cultivars. To generate crop plants conferring resistance against stresses, conventional breeding was used in the past, but because of the complex heredity of abiotic stress tolerance traits, such techniques remain insufficient in making greater enhancement. Genome-engineering based on CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein9) has shown enormous potential in developing climate-resilient cultivars. Likewise, the development of chickpea transgenic lines by knockout of 4CL and REV7 genes exhibits drought tolerance which establishes a foundation for future studies in chickpea. In addition, the CRISPR-Cas9 system can boost yield potential under abiotic stress situations by producing non-transgenic plants having the required characteristics. This review article discusses the validation of gene function based on the CRISPR-Cas9 for the development of abiotic stress-tolerant crop plants, emphasizing the chickpea to open the new ventures of generating abiotic stress-tolerant chickpea varieties.


Asunto(s)
Cicer , Sistemas CRISPR-Cas/genética , Cicer/genética , Fitomejoramiento , Plantas , Estrés Fisiológico/genética
12.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361737

RESUMEN

Circadian rhythms significantly affect metabolism, and their disruption leads to cardiometabolic diseases and fibrosis. The clock repressor Rev-Erb is mainly expressed in the liver, heart, lung, adipose tissue, skeletal muscles, and brain, recognized as a master regulator of metabolism, mitochondrial biogenesis, inflammatory response, and fibrosis. Fibrosis is the response of the body to injuries and chronic inflammation with the accumulation of extracellular matrix in tissues. Activation of myofibroblasts is a key factor in the development of organ fibrosis, initiated by hormones, growth factors, inflammatory cytokines, and mechanical stress. This review summarizes the importance of Rev-Erb in ECM remodeling and tissue fibrosis. In the heart, Rev-Erb activation has been shown to alleviate hypertrophy and increase exercise capacity. In the lung, Rev-Erb agonist reduced pulmonary fibrosis by suppressing fibroblast differentiation. In the liver, Rev-Erb inhibited inflammation and fibrosis by diminishing NF-κB activity. In adipose tissue, Rev- Erb agonists reduced fat mass. In summary, the results of multiple studies in preclinical models demonstrate that Rev-Erb is an attractive target for positively influencing dysregulated metabolism, inflammation, and fibrosis, but more specific tools and studies would be needed to increase the information base for the therapeutic potential of these substances interfering with the molecular clock.


Asunto(s)
Relojes Circadianos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Humanos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factores de Transcripción , Ritmo Circadiano/fisiología , Fibrosis , Inflamación
13.
J Dairy Sci ; 104(7): 7345-7363, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33896625

RESUMEN

Milk is an evolutionary benefit for humans. For infants, it offers optimal nutrients for normal growth, neural development, and protection from harmful microbes. Humans are the only mammals who drink milk throughout their life. Lipids in colostrum originate mostly from milk fat globule membrane (MFGM) droplets extruded from the mammary gland. The MFGM gained much interest as a potential nutraceutical, due to their high phospholipid (PL), ganglioside (GD), and protein contents. In this review, we focused on health effects of MFGM ingredients and dairy food across the life span, especially on neurodevelopment, cardiometabolic health, and frailty in older adults. The MFGM supplements to infants and children reduced gastrointestinal and respiratory tract infections and improved neurodevelopment due to the higher content of protein, PL, and GD in MFGM. The MFGM formulas containing PL and GD improved brain myelination and fastened nerve conduction speed, resulting in improved behavioral developments. Administration of MFGM-rich ingredients improved insulin sensitivity and decreased inflammatory markers, LDL-cholesterol, and triglycerides by lowering intestinal absorption of cholesterol and increasing its fecal excretion. The MFGM supplements, together with exercise, improved ambulatory activities, leg muscle mass, and muscle fiber velocity in older adults. There are great variations in the composition of lipids and proteins in MFGM products, which make comparisons of the different studies impossible. In addition, investigations of the individual MFGM components are required to evaluate their specific effects and molecular mechanisms. Although we are currently only beginning to understand the possible health effects of MFGM products, the current MFGM supplementation trials as presented in this review have shown significant clinical health benefits across the human life span, which are worth further investigation.


Asunto(s)
Enfermedades Cardiovasculares , Fragilidad , Animales , Enfermedades Cardiovasculares/veterinaria , Fragilidad/veterinaria , Glucolípidos , Glicoproteínas , Gotas Lipídicas
14.
J Dairy Sci ; 103(2): 1100-1109, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31759587

RESUMEN

Little is known about how dairy products with different nutrient contents and food matrices affect appetite sensation and gut hormone secretion. The objective of this study was to investigate how appetite sensation and gut hormone secretion in healthy adults are affected by meals with the same amount of fat but from different dairy products. Forty-seven healthy adults (70% women) were recruited to a randomized controlled crossover study with 4 dairy meals consisting of butter, cheese, whipped cream, or sour cream, corresponding to 45 g (approximately 60 energy percent) of fat. Plasma samples were collected for analysis of cholecystokinin (CCK), pancreatic polypeptide (PP), peptide YY (PYY), and ghrelin concentrations at 0, 2, 4, and 6 h after the meals and analyzed as the incremental area under the curve (iAUC0-6h) in a mixed model. Hunger, satiety, and appetite sensations were measured with a visual analog scale (VAS) immediately after finishing the meals and at 4 and 6 h postprandially. Intake of cheese induced a higher level of plasma PP-iAUC0-6h compared with butter or whipped cream, and a higher level of plasma CCK-iAUC0-6h compared with whipped cream. Intake of whipped cream increased VAS appetite at 4 h compared with cheese or sour cream, and at 6 h compared with cheese or butter. No significant meal effect was found for hunger, satiety, plasma PYY, or plasma ghrelin concentration. Intake of cheese increased postprandial plasma PP and CCK concentrations and decreased appetite compared with whipped cream but not with sour cream. These findings encourage further investigations of how different dairy products affect gut hormone secretion and appetite sensation.


Asunto(s)
Productos Lácteos , Ghrelina/sangre , Mucosa Intestinal/metabolismo , Polipéptido Pancreático/sangre , Precursores de Proteínas/sangre , Adolescente , Adulto , Anciano , Apetito , Queso , Estudios Cruzados , Femenino , Humanos , Hambre/efectos de los fármacos , Masculino , Comidas , Persona de Mediana Edad , Periodo Posprandial , Saciedad , Adulto Joven
15.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963306

RESUMEN

Alcoholic beverages stimulate pancreatic enzyme secretions by inducing cholecystokinin (CCK) release. CCK is the major stimulatory hormone of pancreatic exocrine secretions, secreted from enteroendocrine I-cells of the intestine. Fermentation products of alcoholic beverages, such as maleic and succinic acids, influence gastric acid secretions. We hypothesize that maleic and succinic acids stimulate pancreatic exocrine secretions during beer and wine ingestion by increasing CCK secretions. Therefore, the effects of maleic and succinic acids on CCK release were studied in duodenal mucosal cells and the enteroendocrine cell line STC-1. Mucosal cells were perfused for 30 min with 5 min sampling intervals, STC-1 cells were studied under static incubation for 15 min, and supernatants were collected for CCK measurements. Succinate and maleate-induced CCK release were investigated. Succinate and maleate doses dependently stimulated CCK secretions from mucosal cells and STC-1 cells. Diltiazem, a calcium channel blocker, significantly inhibited succinate and maleate-induced CCK secretions from mucosal cells and STC-1 cells. Maleate and succinate did not show cytotoxicity in STC-1 cells. Our results indicate that succinate and maleate are novel CCK-releasing factors in fermented alcoholic beverages and could contribute to pancreatic exocrine secretions and their pathophysiology.


Asunto(s)
Colecistoquinina/metabolismo , Mucosa Intestinal/citología , Bebidas Alcohólicas , Animales , Línea Celular , Diltiazem/metabolismo , Fermentación/fisiología , L-Lactato Deshidrogenasa/metabolismo , Maleatos/metabolismo , Ratas , Ácido Succínico/metabolismo
16.
J Nutr ; 149(3): 422-431, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30759235

RESUMEN

BACKGROUND: Postprandial lipemia is a risk factor for cardiovascular disease. Dairy products differ in nutrient content and food matrix, and little is known about how different dairy products affect postprandial triglyceride (TG) concentrations. OBJECTIVE: We investigated the effect of meals with similar amounts of fat from different dairy products on postprandial TG concentrations over 6 h in healthy adults. METHODS: A randomized controlled cross-over study was performed on 47 subjects (30% men), with median (25th-75th percentile) age of 32 (25-46) y and body mass index of 23.6 (21.0-25.8) kg/m2. Meals included 1 of butter, cheese, whipped cream, or sour cream, corresponding to 45 g of fat (approximately 60 energy%). Serum concentrations of TGs (primary outcome), and total cholesterol (TC), low density lipoprotein cholesterol (LDL cholesterol), high density lipoprotein cholesterol (HDL cholesterol), insulin, glucose, non-esterified fatty acids, and plasma glucose-dependent insulinotropic polypeptide (secondary outcomes) were measured before the meal and 2, 4, and 6 h postprandially. Incremental AUC (iAUC) was calculated for the responses, and data were analyzed using a linear mixed model. RESULTS: Sour cream induced a 61% larger TG-iAUC0-6 h compared to whipped cream (P < 0.001), a 53% larger TG-iAUC0-6 h compared to butter (P < 0.001), and a 23% larger TG-iAUC0-6 h compared to cheese (P = 0.05). No differences in TG-iAUC0-6 h between the other meals were observed. Intake of sour cream induced a larger HDL cholesterol-iAUC0-6 h compared to cheese (P = 0.01). Intake of cheese induced a 124% larger insulin iAUC0-6 h compared to butter (P = 0.006). No other meal effects were observed. CONCLUSIONS: High-fat meals containing similar amount of fat from different dairy products induce different postprandial effects on serum TGs, HDL cholesterol, and insulin in healthy adults. The potential mechanisms and clinical impact of our findings remain to be further elucidated. The study was registered at www.clinicaltrials.gov as NCT02836106.


Asunto(s)
Productos Lácteos/análisis , Grasas de la Dieta/administración & dosificación , Periodo Posprandial , Triglicéridos/sangre , Adulto , Glucemia , Colesterol/sangre , Colesterol/clasificación , Estudios Cruzados , Grasas de la Dieta/análisis , Ácidos Grasos no Esterificados/sangre , Femenino , Humanos , Insulina/sangre , Masculino , Comidas , Persona de Mediana Edad
18.
Appetite ; 110: 15-24, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27916475

RESUMEN

Polydextrose (PDX) reduces subsequent energy intake (EI) when administered at midmorning in single-blind trials of primarily normal-weight men. However, it is unclear if this effect also occurs when PDX is given at breakfast time. Furthermore, for ecological validity, it is desirable to study a female population, including those at risk for obesity. We studied the effects of PDX, served as part of a breakfast or midmorning preload, on subsequent EI and other appetite-related parameters in healthy normal-weight and overweight females. Per earlier studies, the primary outcome was defined as the difference in subsequent EI when PDX was consumed at midmorning versus placebo. Thirty-two volunteers were enrolled in this acute, double-blind, placebo-controlled, randomized, and crossover trial to examine the effects of 12.5 g of PDX, administered as part of a breakfast or midmorning preload, on subsequent EI, subjective feelings of appetite, well-being, and mood. Gastric emptying rates and the blood concentrations of glucose, insulin, cholecystokinin, ghrelin, glucagon-like peptide 1 (GLP-1), and peptide tyrosine-tyrosine were measured in the group that received PDX as part of their breakfast. There were no differences in EI between volunteers who were fed PDX and placebo. PDX intake with breakfast tended to elevate blood glucose (P = 0.06) during the postabsorptive phase, significantly lowered insulin by 15.7% (P = 0.04), and increased GLP-1 by 39.9% (P = 0.02); no other effects on blood parameters or gastric emptying rates were observed. PDX intake at midmorning reduced hunger by 31.4% during the satiation period (P = 0.02); all other subjective feelings of appetite were unaffected. Volunteers had a uniform mood profile during the study. PDX was well tolerated, causing one mild adverse event throughout the trial.


Asunto(s)
Apetito/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Aditivos Alimentarios/administración & dosificación , Glucanos/administración & dosificación , Sobrepeso/tratamiento farmacológico , Adulto , Glucemia/análisis , Desayuno/efectos de los fármacos , Desayuno/psicología , Colecistoquinina/sangre , Estudios Cruzados , Dipéptidos/sangre , Método Doble Ciego , Ingestión de Energía/efectos de los fármacos , Femenino , Vaciamiento Gástrico , Ghrelina/sangre , Péptido 1 Similar al Glucagón/sangre , Humanos , Hambre/efectos de los fármacos , Sobrepeso/psicología , Periodo Posprandial , Saciedad/efectos de los fármacos , Adulto Joven
19.
Environ Sci Technol ; 50(16): 8462-72, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27228447

RESUMEN

Nanoparticle morphology is expected to play a significant role in the stability, aggregation behavior, and ultimate fate of engineered nanomaterials in natural aquatic environments. The aggregation kinetics of ellipsoidal and spherical titanium dioxide (TiO2) nanoparticles (NPs) under different surfactant loadings, pH values, and ionic strengths were investigated in this study. The stability results revealed that alteration of surface charge was the stability determining factor. Among five different surfactants investigated, sodium citrate and Suwannee river fulvic acid (SRFA) were the most effective stabilizers. It was observed that both types of NPs were more stable in monovalent salts (NaCl and NaNO3) as compared with divalent salts (Ca(NO3)2 and CaCl2). The aggregation of spherical TiO2 NPs demonstrated a strong dependency on the ionic strength regardless of the presence of mono or divalent salts; while the ellipsoids exhibited a lower dependency on the ionic strength but was more stable. This work acts as a benchmark study toward understanding the ultimate fate of stabilized NPs in natural environments that are rich in Ca(CO3)2, NaNO3, NaCl, and CaCl2 along with natural organic matters.


Asunto(s)
Nanopartículas/química , Titanio/química , Benzopiranos/química , Citratos/química , Cinética , Concentración Osmolar , Sales (Química)/química , Citrato de Sodio
20.
J Insect Sci ; 152015.
Artículo en Inglés | MEDLINE | ID: mdl-26454480

RESUMEN

Coccinellids are important natural enemies of aphids, scale insects, mealybugs, whiteflies, jassids and mites. They are being augmented or conserved for population reduction of different agricultural crop pests in the concept of Integrated Pest Management throughout the world. The genera and species in the tribe Scymnini known from Pakistan are revised and redescribed. Two genera including two subgenera and six species among which three species are newly reported, is therefore, a new addition to Coccinellid fauna of Pakistan. Keys to all taxa, descriptions of the higher taxa, species diagnoses, synonymies, and distribution records are included.


Asunto(s)
Escarabajos/anatomía & histología , Animales , Escarabajos/clasificación , Pakistán , Control Biológico de Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA