Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 35(30)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38631326

RESUMEN

In the current investigation, zinc oxide (ZnO) nanoparticles and Fe-doped ZnO nanoparticles were sustainably synthesized utilizing an extract derived from theRumex dentatusplant through a green synthesis approach. The Scanning electron microscope (SEM), X-ray diffraction (XRD), Energy-dispersive x-ray spectroscopy (EDX), Ultra-violet visible spectroscopy (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) techniques were used to examine the compositional, morphological, optical, and thermal properties of both samples. The doping of iron into ZnO NPs has significantly influenced their properties. The analysis firmly established that both ZnO NPs and Fe-doped ZnO NPs have hexagonal wurtzite structures and spherical shapes by XRD and SEM. The EDX analysis suggests that iron atoms have been successfully integrated into the ZnO lattice. The change in color observed during the reaction indicated the formation of nanoparticles. The UV-vis peaks at 364 nm and 314 nm confirmed the presence of ZnO NPs and Fe-doped ZnO NPs, respectively. The band gap of ZnO NPs by Fe dopant displayed a narrowing effect. This indicates that adding iron ions to ZnO NPs offers a control band gap. The thermal study TGA revealed that Fe-doped ZnO NPs remain stable when heated up to 600 °C. The antibacterial efficacy of ZnO NPs and Fe-doped ZnO NPs was evaluated against several bacterial strains. The evaluation is based on the zone of inhibition (ZOI). Both samples exhibited excellent antibacterial properties as compared to conventional pharmaceutical agents. These results suggest that synthesizing nanoparticles through plant-based methods is a promising approach to creating versatile and environmentally friendly biomedical products.


Asunto(s)
Antibacterianos , Hierro , Nanopartículas del Metal , Extractos Vegetales , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hierro/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Difracción de Rayos X , Staphylococcus aureus/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier
2.
Molecules ; 27(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35335380

RESUMEN

Composite materials and their applications constitute a hot field of research nowadays due to the fact that they comprise a combination of the unique properties of each component of which they consist. Very often, they exhibit better performance and properties compared to their combined building blocks. Graphene oxide (GO), as the most widely used derivative of graphene, has attracted widespread attention because of its excellent properties. Abundant oxygen-containing functional groups on GO can provide various reactive sites for chemical modification or functionalization of GO, which in turn can be used to develop novel GO-based composites. This review outlines the most recent advances in the field of novel dyes and pigments encompassing GO as a key ingredient or as an important cofactor. The interactions of graphene with other materials/compounds are highlighted. The special structure and unique properties of GO have a great effect on the performance of fabricated hybrid dyes and pigments by enhancing the color performance of dyes, the anticorrosion properties of pigments, the viscosity and rheology of inks, etc., which further expands the applications of dyes and pigments in dyeing, optical elements, solar-thermal energy storage, sensing, coatings, and microelectronics devices. Finally, challenges in the current development as well as the future prospects of GO-based dyes and pigments are also discussed. This review provides a reference for the further exploration of novel dyes and pigments.


Asunto(s)
Grafito , Dispositivos Ópticos , Colorantes , Grafito/química , Óxidos/química
3.
Mikrochim Acta ; 189(1): 37, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34958414

RESUMEN

A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co3O4 exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure's bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co2O4/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co2O4 nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM-1 cm-2), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of < 1 s. The sensor's selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample.


Asunto(s)
Cobalto/química , Dopamina/análisis , Nanocompuestos/química , Óxidos/química , Zinc/química , Espectroscopía Dieléctrica/instrumentación , Espectroscopía Dieléctrica/métodos , Dopamina/química , Electrodos , Límite de Detección , Oxidación-Reducción , Reproducibilidad de los Resultados
4.
Materials (Basel) ; 15(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160958

RESUMEN

In the new era of modern flexible and bendable technology, graphene-based materials have attracted great attention. The excellent electrical, mechanical, and optical properties of graphene as well as the ease of functionalization of its derivates have enabled graphene to become an attractive candidate for the construction of flexible devices. This paper provides a comprehensive review about the most recent progress in the synthesis and applications of graphene-based composites. Composite materials based on graphene, graphene oxide (GO), and reduced graphene oxide (rGO), as well as conducting polymers, metal matrices, carbon-carbon matrices, and natural fibers have potential application in energy-harvesting systems, clean-energy storage devices, and wearable and portable electronics owing to their superior mechanical strength, conductivity, and extraordinary thermal stability. Additionally, the difficulties and challenges in the current development of graphene are summarized and indicated. This review provides a comprehensive and useful database for further innovation of graphene-based composite materials.

5.
Nano Lett ; 9(10): 3635-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19739594

RESUMEN

Conducting polymers for battery applications have been subject to numerous investigations during the last two decades. However, the functional charging rates and the cycling stabilities have so far been found to be insufficient for practical applications. These shortcomings can, at least partially, be explained by the fact that thick layers of the conducting polymers have been used to obtain sufficient capacities of the batteries. In the present letter, we introduce a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Our results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m(2) g(-1) and batteries based on this material can be charged with currents as high as 600 mA cm(-2) with only 6% loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g(-1) or 38-50 mAh g(-1) per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Celulosa/química , Papel , Fuentes de Energía Bioeléctrica/economía , Nanoestructuras/química , Polímeros/química , Pirroles/química , Propiedades de Superficie , Factores de Tiempo
6.
J Phys Chem B ; 113(2): 426-33, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19099422

RESUMEN

The electrochemically controlled anion absorption properties of a novel large surface area composite paper material composed of polypyrrole (PPy) and cellulose derived from Cladophora sp. algae, synthesized with two oxidizing agents, iron(III) chloride and phosphomolybdic acid (PMo), were analyzed in four different electrolytes containing anions (i.e., chloride, aspartate, glutamate, and p-toluenesulfonate) of varying size.The composites were characterized with scanning and transmission electron microscopy, N2 gas adsorption,and conductivity measurements. The potential-controlled ion exchange properties of the materials were studied by cyclic voltammetry and chronoamperometry at varying potentials. The surface area and conductivity of the iron(III) chloride synthesized sample were 58.8 m2/g and 0.65 S/cm, respectively, while the corresponding values for the PMo synthesized sample were 31.3 m2/g and 0.12 S/cm. The number of absorbed ions per sample mass was found to be larger for the iron(III) chloride synthesized sample than for the PMo synthesized one in all four electrolytes. Although the largest extraction yields were obtained in the presence of the smallest anion (i.e., chloride) for both samples, the relative degree of extraction for the largest ions (i.e., glutamate and p-toluenesulfonate) was higher for the PMo sample. This clearly shows that it is possible to increase the extraction yield of large anions by carrying out the PPy polymerization in the presence of large anions. The results likewise show that high ion exchange capacities, as well as extraction and desorption rates, can be obtained for large anions with high surface area composites coated with relatively thin layers of PPy.


Asunto(s)
Celulosa/química , Oxidantes/química , Polímeros/química , Pirroles/química , Aniones/química , Celulosa/ultraestructura , Chlorophyta , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Estructura Molecular , Oxidación-Reducción
7.
J Phys Chem B ; 113(14): 4582-9, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-19338363

RESUMEN

This work investigates the movement of anions during potentiostatic controlled reduction of novel composite materials consisting of high surface area cellulose substrates, extracted from the Cladophora sp. algae, coated with thin ( approximately 50 nm) layers of the intrinsically conducting polymer (ICP) polypyrrole. The coating was achieved by chemical polymerization of pyrrole on the cellulose fibers with iron(III) chloride and phosphomolybdic acid, respectively. The composites are in the form of paper sheets and can be directly immersed into an electrolyte solution for ion absorption/desorption. The motion of glutamate and aspartate anions during cathodic polarization was investigated as a function of preceding anodic polarization at various potentials. The composite was found to exhibit memory effect as the response to a cathodic polarization of constant magnitude produced different responses depending on the magnitude of the preceding anodic potential. After the application of a cathodic potential to the composite, the reduction current curvesgenerated by anions leaving the compositewere found to initially increase in magnitude followed by a monotonic decay. A similar response has not been described and analyzed for electrochemical reduction of anion containing ICP materials earlier. A theoretical model was developed to aid the analysis of the experimental data. The model accounts for both freely mobile anions and anions that may be temporarily trapped in a contracting PPy network during cathodic polarization. By fitting the recorded reduction current curves to this model, detailed information about the ionic movement in the composite could be obtained, which may be used to further optimize the materials properties of conducting polymer systems aimed for specific electrochemical ion exchange processes.


Asunto(s)
Celulosa/química , Polímeros/química , Pirroles/química , Aniones/química , Chlorophyta/química , Conductividad Eléctrica , Electroquímica , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Tamaño de la Partícula , Potenciometría , Propiedades de Superficie , Factores de Tiempo
8.
PLoS One ; 6(12): e29243, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22195031

RESUMEN

Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg(-1), were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30-50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m(2) g(-1)) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)(6), (dT)(20), and (dT)(40) DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules.


Asunto(s)
Celulosa/química , ADN/aislamiento & purificación , Conductividad Eléctrica , Técnicas Electroquímicas/métodos , Nanoestructuras/química , Papel , Polímeros/química , Pirroles/química , Tampones (Química) , Electrodos , Oligonucleótidos/aislamiento & purificación , Soluciones , Espectrometría de Fluorescencia , Factores de Tiempo
9.
J Phys Chem B ; 114(43): 13644-9, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-20939565

RESUMEN

The energy-filtered transmission electron microscopy (EFTEM) technique has been used to study ion-exchange processes in conductive polymer composite nanofibers. The elemental distributions of carbon, nitrogen, oxygen, chlorine, boron, phosphorus, molybdenum, and sulfur within polypyrrole-cellulose nanofibers, used as potential controlled electrochemical solid phase extraction media, have been studied by EFTEM. The distribution of ions within the polypyrrole-cellulose nanofibers and the penetration depth of ions into the material as a function of the size and charge of the latter were investigated. Further, the spatial distribution of single stranded DNA hexamers inside polypyrrole-cellulose nanofibers was mapped subsequent to the electrochemically controlled extraction of DNA from a borate buffer solution. The results show that the EFTEM mapping technique provides unpreceded possibilities for studies of the distribution of ions inside conductive polymer composites.


Asunto(s)
Celulosa/química , Microscopía Electrónica de Transmisión/métodos , Nanofibras/química , Polímeros/química , Pirroles/química , ADN de Cadena Simple/química , Electroquímica , Compuestos de Hierro/química
10.
J Phys Chem B ; 114(12): 4178-82, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20205378

RESUMEN

It is demonstrated that it is possible to coat the individual fibers of wood-based nanocellulose with polypyrrole using in situ chemical polymerization to obtain an electrically conducting continuous high-surface-area composite. The experimental results indicate that the high surface area of the water dispersed material, to a large extent, is maintained upon normal drying without the use of any solvent exchange. Thus, the employed chemical polymerization of polypyrrole on the microfibrillated cellulose (MFC) nanofibers in the hydrogel gives rise to a composite, the structure of which-unlike that of uncoated MFC paper-does not collapse upon drying. The dry composite has a surface area of approximately 90 m(2)/g and a conductivity of approximately 1.5 S/cm, is electrochemically active, and exhibits an ion-exchange capacity for chloride ions of 289 C/g corresponding to a specific capacity of 80 mAh/g. The straightforwardness of the fabrication of the present nanocellulose composites should significantly facilitate industrial manufacturing of highly porous, electroactive conductive paper materials for applications including ion-exchange and paper-based energy storage devices.


Asunto(s)
Celulosa/química , Nanocompuestos , Polímeros/química , Pirroles/química , Madera , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA