Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579011

RESUMEN

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Asunto(s)
Neomicina , Riboswitch , Neomicina/metabolismo , Neomicina/farmacología , Simulación de Dinámica Molecular , Riboswitch/genética , Mutación , Conformación Molecular , Conformación de Ácido Nucleico , Ligandos
2.
Proc Natl Acad Sci U S A ; 116(37): 18404-18409, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451651

RESUMEN

Modern drug discovery increasingly focuses on the drug-target binding kinetics which depend on drug (un)binding pathways. The conventional molecular dynamics simulation can observe only a few binding events even using the fastest supercomputer. Here, we develop 2D gREST/REUS simulation with enhanced flexibility of the ligand and the protein binding site. Simulation (43 µs in total) applied to an inhibitor binding to c-Src kinase covers 100 binding and unbinding events. On the statistically converged free-energy landscapes, we succeed in predicting the X-ray binding structure, including water positions. Furthermore, we characterize hidden semibound poses and transient encounter complexes on the free-energy landscapes. Regulatory residues distant from the catalytic core are responsible for the initial inhibitor uptake and regulation of subsequent bindings, which was unresolved by experiments. Stabilizing/blocking of either the semibound poses or the encounter complexes can be an effective strategy to optimize drug-target residence time.


Asunto(s)
Entropía , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Sitios de Unión , Fenómenos Biofísicos , Dominio Catalítico , Cinética , Ligandos , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos , Termodinámica , Difracción de Rayos X
3.
Biophys J ; 120(6): 1060-1071, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33484712

RESUMEN

The ongoing COVID-19 pandemic caused by the new coronavirus, SARS-CoV-2, calls for urgent developments of vaccines and antiviral drugs. The spike protein of SARS-CoV-2 (S-protein), which consists of trimeric polypeptide chains with glycosylated residues on the surface, triggers the virus entry into a host cell. Extensive structural and functional studies on this protein have rapidly advanced our understanding of the S-protein structure at atomic resolutions, although most of these structural studies overlook the effect of glycans attached to the S-protein on the conformational stability and functional motions between the inactive down and active up forms. Here, we performed all-atom molecular dynamics simulations of both down and up forms of a fully glycosylated S-protein in solution as well as targeted molecular dynamics simulations between them to elucidate key interdomain interactions for stabilizing each form and inducing the large-scale conformational transitions. The residue-level interaction analysis of the simulation trajectories detects distinct amino acid residues and N-glycans as determinants on conformational stability of each form. During the conformational transitions between them, interdomain interactions mediated by glycosylated residues are switched to play key roles on the stabilization of another form. Electrostatic interactions, as well as hydrogen bonds between the three receptor binding domains, work as driving forces to initiate the conformational transitions toward the active form. This study sheds light on the mechanisms underlying conformational stability and functional motions of the S-protein, which are relevant for vaccine and antiviral drug developments.


Asunto(s)
Simulación de Dinámica Molecular , Glicoproteína de la Espiga del Coronavirus/química , Enlace de Hidrógeno , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estabilidad Proteica , Soluciones , Electricidad Estática
4.
Angew Chem Int Ed Engl ; 60(41): 22401-22410, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34121297

RESUMEN

Enzymes catalyzing [4+2] cycloaddition have attracted increasing attention because of their key roles in natural product biosynthesis. Here, we solved the X-ray crystal structures of a pair of decalin synthases, Fsa2 and Phm7, that catalyze intramolecular [4+2] cycloadditions to form enantiomeric decalin scaffolds during biosynthesis of the HIV-1 integrase inhibitor equisetin and its stereochemical opposite, phomasetin. Computational modeling, using molecular dynamics simulations as well as quantum chemical calculations, demonstrates that the reactions proceed through synergetic conformational constraints assuring transition state-like substrates folds and their stabilization by specific protein-substrate interactions. Site-directed mutagenesis experiments verified the binding models. Intriguingly, the flexibility of bound substrates is largely different in two enzymes, suggesting the distinctive mechanism of dynamics regulation behind these stereoselective reactions. The proposed reaction mechanism herein deepens the basic understanding how these enzymes work but also provides a guiding principle to create artificial enzymes.


Asunto(s)
Naftalenos/metabolismo , Pirrolidinonas/metabolismo , Tetrahidronaftalenos/metabolismo , Modelos Moleculares , Conformación Molecular , Naftalenos/química , Estereoisomerismo
5.
J Chem Inf Model ; 60(11): 5382-5394, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32786707

RESUMEN

The accurate prediction of protein-ligand binding affinity is a central challenge in computational chemistry and in-silico drug discovery. The free energy perturbation (FEP) method based on molecular dynamics (MD) simulation provides reasonably accurate results only if a reliable structure is available via high-resolution X-ray crystallography. To overcome the limitation, we propose a sequential prediction protocol using generalized replica exchange with solute tempering (gREST) and FEP. At first, ligand binding poses are predicted using gREST, which weakens protein-ligand interactions at high temperatures to sample multiple binding poses. To avoid ligand dissociation at high temperatures, a flat-bottom restraint potential centered on the binding site is applied in the simulation. The binding affinity of the most reliable pose is then calculated using FEP. The protocol is applied to the bindings of ten ligands to FK506 binding proteins (FKBP), showing the excellent agreement between the calculated and experimental binding affinities. The present protocol, which is referred to as the gREST+FEP method, would help to predict the binding affinities without high-resolution structural information on the ligand-bound state.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Sitios de Unión , Ligandos , Unión Proteica , Termodinámica
6.
Biophys J ; 116(1): 57-68, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30573176

RESUMEN

α-amino-3-hydroxy-5-methyl-4-isoaxazolepropionic acid (AMPA) ionotropic glutamate receptors mediate fast excitatory neurotransmission in the central nervous system, and their dysfunction is associated with neurological diseases. Glutamate binding to ligand-binding domains (LBDs) of AMPA receptors induces channel opening in the transmembrane domains of the receptors. The T686A mutation reduces glutamate efficacy so that the glutamate behaves as a partial agonist. The crystal structures of wild-type and mutant LBDs are very similar and cannot account for the observed behavior. To elucidate the molecular mechanism inducing partial agonism of the T686A mutant, we computed the free-energy landscapes governing GluA2 LBD closure using replica-exchange umbrella sampling simulations. A semiclosed state, not observed in crystal structures, appears in the mutant during simulation. In this state, the LBD cleft opens slightly because of breaking of interlobe hydrogen bonds, reducing the efficiency of channel opening. The energy difference between the LBD closed and semiclosed states is small, and transitions between the two states would occur by thermal fluctuations. Evidently, glutamate binding to the T686A mutant induces a population shift from a closed to a semiclosed state, explaining the partial agonism in the AMPA receptor.


Asunto(s)
Simulación del Acoplamiento Molecular , Receptores AMPA/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Agonistas de Aminoácidos Excitadores/química , Agonistas de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Humanos , Enlace de Hidrógeno , Unión Proteica , Receptores AMPA/agonistas , Receptores AMPA/genética , Receptores AMPA/metabolismo
7.
J Chem Inf Model ; 59(9): 3879-3888, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31390205

RESUMEN

Molecular recognition underpins all specific protein-ligand interactions and is essential for biomolecular functions. The prediction of canonical binding poses and distinguishing binders from nonbinders are much sought after goals. Here, we apply the generalized replica exchange with solute tempering method, gREST, combined with a flat-bottom potential to evaluate binder and nonbinder interactions with a T4 lysozyme Leu99Ala mutant. The buried hydrophobic cavity and possibility of coupled conformational changes in this protein make binding predictions difficult. The present gREST simulations, enabling enhanced flexibilities of the ligand and protein residues near the binding site, sample bindings in multiple poses, and correct portrayal of X-ray structures. The free-energy profiles of binders (benzene, ethylbenzene, and n-hexylbenzene) are distinct from those of nonbinders (phenol and benzaldehyde). Bindings of the two larger molecules seem to be associated with a structural change toward an excited conformation of the protein, which agrees with experimental findings. The protocol is generally applicable to various proteins having buried cavities with limited access for ligands with different shapes, sizes, and chemical properties.


Asunto(s)
Bacteriófago T4/enzimología , Simulación de Dinámica Molecular , Muramidasa/metabolismo , Derivados del Benceno/metabolismo , Muramidasa/química , Unión Proteica , Conformación Proteica , Termodinámica
8.
Biophys J ; 110(4): 930-8, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26910429

RESUMEN

The asymmetric outer membrane of Gram-negative bacteria is formed of the inner leaflet with phospholipids and the outer leaflet with lipopolysaccharides (LPS). Outer membrane protein F (OmpF) is a trimeric porin responsible for the passive transport of small molecules across the outer membrane of Escherichia coli. Here, we report the impact of different levels of heterogeneity in LPS environments on the structure and dynamics of OmpF using all-atom molecular dynamics simulations. The simulations provide insight into the flexibility and dynamics of LPS components that are highly dependent on local environments, with lipid A being the most rigid and O-antigen being the most flexible. Increased flexibility of O-antigen polysaccharides is observed in heterogeneous LPS systems, where the adjacent O-antigen repeating units are weakly interacting and thus more dynamic, compared to homogeneous LPS systems in which LPS interacts strongly with each other with limited overall flexibility due to dense packing. The model systems were validated by comparing molecular-level details of interactions between OmpF surface residues and LPS core sugars with experimental data, establishing the importance of LPS core oligosaccharides in shielding OmpF surface epitopes recognized by monoclonal antibodies. There are LPS environmental influences on the movement of bulk ions (K(+) and Cl(-)), but the ion selectivity of OmpF is mainly affected by bulk ion concentration.


Asunto(s)
Lipopolisacáridos/metabolismo , Simulación de Dinámica Molecular , Porinas/química , Porinas/metabolismo , Membrana Celular/metabolismo , Escherichia coli K12/citología , Escherichia coli K12/metabolismo , Lipopolisacáridos/química , Permeabilidad , Porosidad , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Especificidad por Sustrato , Propiedades de Superficie
9.
J Chem Phys ; 138(4): 044106, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23387567

RESUMEN

The nudged elastic band (NEB) and string methods are widely used to obtain the reaction path of chemical reactions and phase transitions. In these methods, however, it is difficult to define an accurate Lagrangian to generate the conservative forces. On the other hand, the constrained optimization with locally updated planes (CO-LUP) scheme defines target function properly and suitable for micro-iteration optimizations in quantum mechanical/molecular mechanical (QM/MM) systems, which uses the efficient second order QM optimization. However, the method does have problems of inaccurate estimation of reactions and inappropriate accumulation of images around the energy minimum. We introduce three modifications into the CO-LUP scheme to overcome these problems: (1) An improved tangent estimation of the reaction path, which is used in the NEB method, (2) redistribution of images using an energy-weighted interpolation before updating local tangents, and (3) reduction of the number of constraints, in particular translation/rotation constraints, for improved convergence. First, we test the method on the isomerization of alanine dipeptide without QM/MM calculation, showing that the method is comparable to the string method both in accuracy and efficiency. Next, we apply the method for defining the reaction paths of the rearrangement reaction catalyzed by chorismate mutase (CM) and of the phosphoryl transfer reaction catalyzed by cAMP-dependent protein kinase (PKA) using generalized hybrid orbital QM/MM calculations. The reaction energy barrier of CM is in high agreement with the experimental value. The path of PKA reveals that the enzyme reaction is associative and there is a late transfer of the substrate proton to Asp 166, which is in agreement with the recently published result using the NEB method.

10.
J Toxicol Sci ; 48(5): 243-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37121739

RESUMEN

The interaction between sunlight and drugs can lead to phototoxicity in patients who have received such drugs. Phototoxicity assessment is a regulatory requirement globally and one of the main toxicity screening steps in the early stages of drug discovery. An in silico-in vitro approach has been utilized mainly for toxicology assessments at these stages. Although several quantitative structure-activity relationship (QSAR) models for phototoxicity have been developed, in silico technology to evaluate phototoxicity has not been well established. In this study, we attempted to develop an artificial intelligence (AI) model to predict the in vitro Neutral Red Uptake Phototoxicity Test results from a chemical structure and its derived information. To accomplish this, we utilized an open-source software library, kMoL. kMoL employs a graph convolutional neural networks (GCN) approach, which allows it to learn the data for the specified chemical structure. kMoL also utilizes the integrated gradient (IG) method, enabling it to visually display the substructures contributing to any positive results. To construct this AI model, we used only the chemical structure as a basis, then added the descriptors and the HOMO-LUMO gap, which was obtained from quantum chemical calculations. As a result, the assortment of chemical structures and the HOMO-LUMO gap produced an AI model with high discrimination performance, and an F1 score of 0.857. Additionally, our AI model could visualize the substructures involved in phototoxicity using the IG method. Our AI model can be applied as a toxicity screening method and could enhance productivity in drug development.


Asunto(s)
Inteligencia Artificial , Dermatitis Fototóxica , Humanos , Redes Neurales de la Computación , Dermatitis Fototóxica/etiología , Desarrollo de Medicamentos , Descubrimiento de Drogas
11.
FEBS J ; 290(9): 2366-2378, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36282120

RESUMEN

Protein conformational changes with fluctuations are fundamental aspects of protein-protein interactions (PPIs); understanding these motions is required for the rational design of PPI-regulating compounds. Src homology 2 (SH2) domains are commonly found in adapter proteins involved in signal transduction and specifically bind to consensus motifs of proteins containing phosphorylated tyrosine (pY). Here, we analysed the interaction between the N-terminal SH2 domain (nSH2) of the regulatory subunit in phosphoinositide 3-kinase (PI3K) and the cytoplasmic region of the T-cell co-receptor, CD28, using NMR and molecular dynamics (MD) simulations. First, we assigned the backbone signals of nSH2 on 1 H-15 N heteronuclear single quantum coherence spectra in the absence or presence of the CD28 phosphopeptide, SDpYMNMTPRRPG. Chemical shift perturbation experiments revealed allosteric changes at the BC loop and the C-terminal region of nSH2 upon CD28 binding. NMR relaxation experiments showed a conformational exchange associated with CD28 binding in these regions. The conformational stabilisation of the C-terminal region correlated with the regulation of PI3K catalytic function. Further, using 19 F- and 31 P-labelled CD28 phosphopeptide, we analysed the structural dynamics of CD28 and demonstrated that the aromatic ring of the pY residue fluctuated between multiple conformations upon nSH2 binding. Our MD simulations largely explained the NMR results and the structural dynamics of nSH2 and CD28 in both bound and unbound states. Notably, in addition to its major conformation, we detected a minor conformation of nSH2 in the CD28 bound state that may explain the allosteric conformational change in the BC loop.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Dominios Homologos src , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Antígenos CD28/genética , Antígenos CD28/química , Antígenos CD28/metabolismo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
12.
Comput Struct Biotechnol J ; 21: 2172-2187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37013003

RESUMEN

Apatinib is known to be a highly selective vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor with anti-angiogenic and anti-tumor properties. In a phase III study, the objective response rate to apatinib was low. It remains unclear why the effectivity of apatinib varies among patients and what type of patients are candidates for the treatment. In this study, we investigated the anti-tumor efficacy of apatinib against 13 gastric cancer cell lines and found that it differed depending on the cell line. Using integrated wet and dry approaches, we showed that apatinib was a multi-kinase inhibitor of c-Kit, RAF1, VEGFR1, VEGFR2, and VEGFR3, predominantly inhibiting c-Kit. Notably, KATO-III, which was the most apatinib-sensitive among the gastric cancer cell lines investigated, was the only cell line expressing c-Kit, RAF1, VEGFR1, and VEGFR3 but not VEGFR2. Furthermore, we identified SNW1 as a molecule affected by apatinib that plays an important role in cell survival. Finally, we identified the molecular network related to SNW1 that was affected by treatment with apatinib. These results suggest that the mechanism of action of apatinib in KATO-III cells is independent of VEGFR2 and that the differential efficacy of apatinib was due to differences in expression patterns of receptor tyrosine kinases. Furthermore, our results suggest that the differential efficacy of apatinib in gastric cell lines may be attributed to SNW1 phosphorylation levels at a steady state. These findings contribute to a deeper understanding of the mechanism of action of apatinib in gastric cancer cells.

13.
Rapid Commun Mass Spectrom ; 26(24): 2877-84, 2012 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-23136018

RESUMEN

RATIONALE: A central issue in glycan mass analysis is the ambiguity of structural assignments due to the heterogeneity and complexity of glycan structures. Ion mobility mass spectrometry (IM-MS) has the potential to separate isomeric glycans depending on their unique collisional cross section especially when coupled with hydrophilic interaction liquid chromatography (HILIC). METHODS: Ten pyridylaminated biantennary N-glycans including isomeric structures were measured by electrospray ionization quadrupole-time-of-flight mass spectrometry with an ion mobility phase. We investigated which adduct ions would be suitable for good separation in the ion mobility phase. The differences in observed drift time of isomeric glycans were assessed by molecular dynamics (MD) simulations in vacuum. Connecting an HILIC system with IM-MS provided another, augmented separation mode. RESULTS: By selecting doubly protonated precursor ion species, we succeeded in separating a pair of isomeric glycans in the ion mobility phase with reasonable resolution. MD simulations of monogalactosylated glycan isomers indicate that the galactosylated Man α1-3 branch preferentially folds back to the core chitobiose portion to form a compact structure. IM-MS combined with HILIC resulted in even clearer separation of isomeric glycans within 15 min. CONCLUSIONS: A combination of IM-MS with an HILIC system is eminently suitable for the confident and rapid distinction of glycan structures within a defined mixture.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Polisacáridos/química , Conformación de Carbohidratos , Hexosas/química , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Simulación de Dinámica Molecular , Peso Molecular , Polisacáridos/aislamiento & purificación
14.
Curr Opin Struct Biol ; 72: 88-94, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34592697

RESUMEN

Recent advances in atomistic molecular dynamics (MD) simulations of biomolecules allow us to explore their conformational spaces widely, observing large-scale conformational fluctuations or transitions between distinct structures. To reproduce or refine experimental data using MD simulations, structure ensembles, which are characterized by multiple structures and their statistical weights on the rugged free-energy landscapes, are often used. Here, we summarize weight average approaches for various experimental measurements. Weight average approaches are now applied to hybrid quantum mechanics/molecular mechanics MD simulations to predict fast vibrational motions in a protein with a high accuracy for better understanding of molecular functions from atomic structures.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica
15.
Front Mol Biosci ; 9: 878830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573746

RESUMEN

Molecular dynamics (MD) simulations are increasingly used to study various biological processes such as protein folding, conformational changes, and ligand binding. These processes generally involve slow dynamics that occur on the millisecond or longer timescale, which are difficult to simulate by conventional atomistic MD. Recently, we applied a two-dimensional (2D) replica-exchange MD (REMD) method, which combines the generalized replica exchange with solute tempering (gREST) with the replica-exchange umbrella sampling (REUS) in kinase-inhibitor binding simulations, and successfully observed multiple ligand binding/unbinding events. To efficiently apply the gREST/REUS method to other kinase-inhibitor systems, we establish modified, practical protocols with non-trivial simulation parameter tuning. The current gREST/REUS simulation protocols are tested for three kinase-inhibitor systems: c-Src kinase with PP1, c-Src kinase with Dasatinib, and c-Abl kinase with Imatinib. We optimized the definition of kinase-ligand distance as a collective variable (CV), the solute temperatures in gREST, and replica distributions and umbrella forces in the REUS simulations. Also, the initial structures of each replica in the 2D replica space were prepared carefully by pulling each ligand from and toward the protein binding sites for keeping stable kinase conformations. These optimizations were carried out individually in multiple short MD simulations. The current gREST/REUS simulation protocol ensures good random walks in 2D replica spaces, which are required for enhanced sampling of inhibitor dynamics around a target kinase.

16.
Elife ; 112022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35323112

RESUMEN

Spike (S) protein is the primary antigenic target for neutralization and vaccine development for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It decorates the virus surface and undergoes large motions of its receptor binding domains (RBDs) to enter the host cell. Here, we observe Down, one-Up, one-Open, and two-Up-like structures in enhanced molecular dynamics simulations, and characterize the transition pathways via inter-domain interactions. Transient salt-bridges between RBDA and RBDC and the interaction with glycan at N343B support RBDA motions from Down to one-Up. Reduced interactions between RBDA and RBDB in one-Up induce RBDB motions toward two-Up. The simulations overall agree with cryo-electron microscopy structure distributions and FRET experiments and provide hidden functional structures, namely, intermediates along Down-to-one-Up transition with druggable cryptic pockets as well as one-Open with a maximum exposed RBD. The inherent flexibility of S-protein thus provides essential information for antiviral drug rational design or vaccine development.


Asunto(s)
Glicoproteína de la Espiga del Coronavirus , COVID-19 , Microscopía por Crioelectrón , Humanos , Dominios Proteicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
17.
Chem Sci ; 13(10): 3027-3034, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35432850

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The main protease (Mpro) is a promising target for COVID-19 treatment. Here, we report an irreversible SARS-CoV-2 Mpro inhibitor possessing chlorofluoroacetamide (CFA) as a warhead for the covalent modification of Mpro. Ugi multicomponent reaction using chlorofluoroacetic acid enabled the rapid synthesis of dipeptidic CFA derivatives that identified 18 as a potent inhibitor of SARS-CoV-2 Mpro. Among the four stereoisomers, (R,R)-18 exhibited a markedly higher inhibitory activity against Mpro than the other isomers. Reaction kinetics and computational docking studies suggest that the R configuration of the CFA warhead is crucial for the rapid covalent inhibition of Mpro. Our findings highlight the prominent influence of the CFA chirality on the covalent modification of proteinous cysteines and provide the basis for improving the potency and selectivity of CFA-based covalent inhibitors.

18.
Biophys J ; 101(10): L44-6, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22098756

RESUMEN

Structural diversity of N-glycans is essential for specific binding to their receptor proteins. To gain insights into structural and dynamic aspects in atomic detail not normally accessible by experiment, we here perform extensive molecular-dynamics simulations of N-glycans in solution using the replica-exchange method. The simulations show that five distinct conformers exist in solution for the N-glycans with and without bisecting GlcNAc. Importantly, the population sizes of three of the conformers are drastically reduced upon the introduction of bisecting GlcNAc. This is caused by a local hydrogen-bond rearrangement proximal to the bisecting GlcNAc. These simulations show that an N-glycan modification like the bisecting GlcNAc selects a certain "key" (or group of "keys") within the framework of the "bunch of keys" mechanism. Hence, the range of specific glycan-protein interactions and affinity changes need to be understood in terms of the structural diversity of glycans and the alteration of conformational equilibria by core modification.


Asunto(s)
Simulación de Dinámica Molecular , Polisacáridos/química , Agua/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Datos de Secuencia Molecular , Termodinámica
19.
J Comput Chem ; 32(2): 260-70, 2011 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-20652880

RESUMEN

Reversible phosphorylation of proteins is a post-translational modification that regulates diverse biological processes. The molecular mechanism underlying phosphoryl transfer catalyzed by enzymes remains a subject of active debate. In particular, the nature of transition state (TS), whether it has an associative or dissociative character, has been one of the most controversial issues. Structural evidence supports associative TS, whereas physical organic studies point to a dissociative character. Here we perform hybrid quantum mechanics/molecular mechanics simulations for the reversible phosphorylation of phosphoserine phosphatase (PSP) to study the nature of the TS. Both phosphorylation and dephosphorylation reactions are investigated based on the two-dimensional energy surfaces along phosphoryl and proton transfer coordinates. The structures of the active site at TS in both reactions reveal compact geometries, consistent with crystal structures of PSP with phosphate analogues. However, the electron density of the phosphoryl group in both TS structures slightly decreases compared with that in the reactant states. These findings suggest that the TS of PSP has a geometrically associative yet electronically dissociative character and strongly depends on proton transfer being coupled with phosphoryl transfer. Structure and literature database, which searches on phosphotransferases, suggest that such a hybrid TS is consistent with many structures and physical organic studies and likely holds for most enzymes catalyzing phosphoryl transfer.


Asunto(s)
Methanococcales/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Catálisis , Dominio Catalítico , Enlace de Hidrógeno , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Teoría Cuántica
20.
J Phys Chem B ; 125(8): 2089-2097, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33606939

RESUMEN

An understanding of how an antiviral monoclonal antibody recognizes its target is vital for the development of neutralizing antibodies and vaccines. The extensive glycosylation of viral proteins almost certainly affects the antibody response, but the investigation of such effects is hampered by the huge range of structures and interactions of surface glycans through their inherent complexity and flexibility. Here, we built an atomistic model of a fully glycosylated envelope protein complex of the Lassa virus and performed molecular dynamics simulations to characterize the impact of surface glycans on the antibody response. The simulations attested to the variety of conformations and interactions of surface glycans. The results show that glycosylation nonuniformly shields the surface of the complex and only marginally affects protein dynamics. The glycans gather in distinct clusters through interaction with protein residues, and only a few regions are left accessible by an antibody. We successfully recovered known protein epitopes by integrating the simulation results with existing sequence- and structure-based epitope prediction methods. The results emphasize the rich structural environment of glycans and demonstrate that shielding is not merely envelopment by a uniform blanket of sugars. This work provides a molecular basis for integrating otherwise elusive structural properties of glycans into vaccine and neutralizing antibody developments.


Asunto(s)
Anticuerpos Neutralizantes , Virus Lassa , Epítopos , Glicosilación , Virus Lassa/metabolismo , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA