Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879616

RESUMEN

Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1-TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1-TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.


Asunto(s)
Caveolas/metabolismo , Endotelio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Hipertensión Arterial Pulmonar/etiología , Canales Catiónicos TRPV/metabolismo , Animales , Presión Arterial , Humanos , Ratones Noqueados , NADPH Oxidasa 1/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína Quinasa C/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Canales Catiónicos TRPV/genética
2.
J Cardiovasc Magn Reson ; 24(1): 23, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35369885

RESUMEN

BACKGROUND: While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS: Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS: Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS: Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.


Asunto(s)
Cardiopatías , Imagen por Resonancia Cinemagnética , Voluntarios Sanos , Cardiopatías/diagnóstico por imagen , Humanos , Imagen por Resonancia Cinemagnética/métodos , Espectroscopía de Resonancia Magnética , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
3.
JACC Basic Transl Sci ; 8(5): 501-514, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37325396

RESUMEN

Coronary microvascular disease (CMD) caused by obesity and diabetes is major contributor to heart failure with preserved ejection fraction; however, the mechanisms underlying CMD are not well understood. Using cardiac magnetic resonance applied to mice fed a high-fat, high-sucrose diet as a model of CMD, we elucidated the role of inducible nitric oxide synthase (iNOS) and 1400W, an iNOS antagonist, in CMD. Global iNOS deletion prevented CMD along with the associated oxidative stress and diastolic and subclinical systolic dysfunction. The 1400W treatment reversed established CMD and oxidative stress and preserved systolic/diastolic function in mice fed a high-fat, high-sucrose diet. Thus, iNOS may represent a therapeutic target for CMD.

4.
Circ Cardiovasc Imaging ; 14(3): e011774, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33706537

RESUMEN

BACKGROUND: Adenosine stress T1 mapping is an emerging magnetic resonance imaging method to investigate coronary vascular function and myocardial ischemia without application of a contrast agent. Using gene-modified mice and 2 vasodilators, we elucidated and compared the mechanisms of adenosine myocardial perfusion imaging and adenosine T1 mapping. METHODS: Wild-type (WT), A2AAR-/- (adenosine A2A receptor knockout), A2BAR-/- (adenosine A2B receptor knockout), A3AR-/- (adenosine A3 receptor knockout), and eNOS-/- (endothelial nitric oxide synthase knockout) mice underwent rest and stress perfusion magnetic resonance imaging (n=8) and T1 mapping (n=10) using either adenosine, regadenoson (a selective A2AAR agonist), or saline. Myocardial blood flow and T1 were computed from perfusion imaging and T1 mapping, respectively, at rest and stress to assess myocardial perfusion reserve and T1 reactivity (ΔT1). Changes in heart rate for each stress agent were also calculated. Two-way ANOVA was used to detect differences in each parameter between the different groups of mice. RESULTS: Myocardial perfusion reserve was significantly reduced only in A2AAR-/- compared to WT mice using adenosine (1.06±0.16 versus 2.03±0.52, P<0.05) and regadenoson (0.98±026 versus 2.13±0.75, P<0.05). In contrast, adenosine ΔT1 was reduced compared with WT mice (3.88±1.58) in both A2AAR-/- (1.63±1.32, P<0.05) and A2BAR-/- (1.55±1.35, P<0.05). Furthermore, adenosine ΔT1 was halved in eNOS-/- (1.76±1.46, P<0.05) versus WT mice. Regadenoson ΔT1 was approximately half of adenosine ΔT1 in WT mice (1.97±1.50, P<0.05), and additionally, it was significantly reduced in eNOS-/- mice (-0.22±1.46, P<0.05). Lastly, changes in heart rate was 2× greater using regadenoson versus adenosine in all groups except A2AAR-/-, where heart rate remained constant. CONCLUSIONS: The major findings are that (1) although adenosine myocardial perfusion reserve is mediated through the A2A receptor, adenosine ΔT1 is mediated through the A2A and A2B receptors, (2) adenosine myocardial perfusion reserve is endothelial independent while adenosine ΔT1 is partially endothelial dependent, and (3) ΔT1 mediated through the A2A receptor is endothelial dependent while ΔT1 mediated through the A2B receptor is endothelial independent.


Asunto(s)
Adenosina/farmacología , Enfermedad de la Arteria Coronaria/fisiopatología , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/fisiopatología , Imagen por Resonancia Cinemagnética/métodos , Imagen de Perfusión Miocárdica/métodos , Animales , Enfermedad de la Arteria Coronaria/diagnóstico , Vasos Coronarios/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA