Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nutr ; 62(2): 633-646, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36178520

RESUMEN

PURPOSE: 1) To test the hypothesis of the existence of a perinatal vitamin A (VA) programming of VA metabolism and to better understand the intestinal regulation of VA metabolism. METHODS: Offspring from rats reared on a control (C) or a VA-deficient (D) diet from 6 weeks before mating until offspring weaning, i.e., 7 weeks after mating, were themselves reared on a C or D diet for 19 weeks, resulting in the following groups: C-C (parents fed C-offspring fed C), D-C, C-D and D-D. VA concentrations were measured in plasma and liver. ß-Carotene bioavailability and its intestinal conversion rate to VA, as well as vitamin D and E bioavailability, were assessed after gavages with these vitamins. Expression of genes involved in VA metabolism and transport was measured in intestine and liver. RESULTS: C-D and D-D had no detectable retinyl esters in their liver. Retinolemia, hepatic retinol concentrations and postprandial plasma retinol response to ß-carotene gavage were higher in D-C than in C-C. Intestinal expression of Isx was abolished in C-D and D-D and this was concomitant with a higher expression of Bco1, Scarb1, Cd36 and Lrat in males receiving a D diet as compared to those receiving a C diet. ß-Carotene, vitamin D and E bio-availabilities were lower in offspring receiving a D diet as compared to those receiving a C diet. CONCLUSION: A VA-deficient diet during the perinatal period modifies the metabolism of this vitamin in the offspring. Isx-mediated regulation of Bco1 and Scarb1 expression exists only in males severely deficient in this vitamin. Severe VA deficiency impairs ß-carotene and vitamin D and E bioavailability.


Asunto(s)
Deficiencia de Vitamina A , Vitamina A , Embarazo , Femenino , Ratas , Animales , Masculino , beta Caroteno , Vitaminas , Hígado/metabolismo , Intestinos , Vitamina D/metabolismo
2.
Molecules ; 26(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34361616

RESUMEN

The extraction of phenolic compounds from olive mill wastes is important, not only to avoid environmental damages, but also because of the intrinsic value of those biophenols, well-known for their high antioxidant potential and health benefits. This study focuses on tyrosol (Tyr) and hydroxytyrosol (HT), two of the main phenolic compounds found in olive mill wastes. A new, simple, and eco-friendly extraction process for the removal of phenolic compounds from aqueous solutions using native ß-cyclodextrin (ß-CD) in the solid state has been developed. Several ß-CD/biophenol molar ratios and biophenol concentrations were investigated, in order to maintain ß-CD mostly in the solid state while optimizing the extraction yield and the loading capacity of the sorbent. The extraction efficiencies of Tyr and HT were up to 61%, with a total solid recovery higher than 90% using an initial concentration of 100 mM biophenol and 10 molar equivalents of ß-CD. The photochemical stability of the complexes thus obtained was estimated from ∆E*ab curve vs. illumination time. The results obtained showed that the phenols encapsulated into solid ß-CD are protected against photodegradation. The powder obtained could be directly developed as a safe-grade food supplement. This simple eco-friendly process could be used for extracting valuable biophenols from olive mill wastewater.


Asunto(s)
Antioxidantes , Olea/química , Aceite de Oliva/química , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Suplementos Dietéticos , Alcohol Feniletílico/química , Alcohol Feniletílico/aislamiento & purificación , Aguas Residuales/química , beta-Ciclodextrinas/química
3.
FASEB J ; 33(2): 2084-2094, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30222077

RESUMEN

Efficient intestinal absorption of dietary vitamin D is required in most people to ensure an adequate status. Thus, we investigated the involvement of ATP binding cassette subfamily B member 1 (ABCB1) in vitamin D intestinal efflux. Both cholecalciferol (D3) and 25-hydroxycholecalciferol [25(OH)D3] apical effluxes were decreased by chemical inhibition of ABCB1 in Caco-2 cells and increased by ABCB1 overexpression in Griptites or Madin-Darby canine kidney type II cells. Mice deficient for the 2 murine ABCB1s encoded by Abcb1a and Abcb1b genes ( Abcb1-/-) displayed an accumulation of 25(OH)D3 in plasma, intestine, brain, liver, and kidneys, together with an increased D3 postprandial response after gavage compared with controls. 25(OH)D3 efflux through Abcb1-/- intestinal explants was markedly decreased compared with controls. This reduction of 25(OH)D3 transfer from plasma to lumen was further confirmed in vivo in intestine-perfused mice. Docking experiments established that both D3 and 25(OH)D3 could bind with high affinity to Caenorhabditis elegans P-glycoprotein, used as an ABCB1 model. Finally, in a group of 39 healthy male adults, a single-nucleotide polymorphism (SNP) in ABCB1 (rs17064) was significantly associated with the fasting plasma 25(OH)D3 concentration. Thus, we showed here for the first time that ABCB1 is involved in neo-absorbed vitamin D efflux by the enterocytes and that it also contributes to vitamin D transintestinal excretion and likely impacts vitamin D status.-Margier, M., Collet, X., le May, C., Desmarchelier, C., André, F., Lebrun, C., Defoort, C., Bluteau, A., Borel, P., Lespine, A., Reboul, E. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux.


Asunto(s)
Calcifediol , Colecalciferol , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Vitamina D , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/genética , Células CACO-2 , Calcifediol/farmacocinética , Calcifediol/farmacología , Colecalciferol/farmacocinética , Colecalciferol/farmacología , Perros , Humanos , Absorción Intestinal/genética , Mucosa Intestinal/citología , Células de Riñón Canino Madin Darby , Ratones , Ratones Noqueados , Vitamina D/farmacocinética , Vitamina D/farmacología
4.
IUBMB Life ; 71(4): 416-423, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30308094

RESUMEN

Vitamin E is an essential molecule for our development and health. It has long been thought that it was absorbed and transported through cellular membranes by a passive diffusion process. However, data obtained during the past 15 years showed that its absorption is actually mediated, at least in part, by cholesterol membrane transporters including the scavenger receptor class B type I (SR-BI), CD36 molecule (CD36), NPC1-like transporter 1 (NPC1L1), and ATP-binding cassettes A1 and G1 (ABCA1 and ABCG1). This review focuses on the absorption process of vitamin E across the enterocyte. A special attention is given to the regulation of this process, including the possible competition with other fat-soluble micronutrients, and the modulation of transporter expressions. Overall, recent results noticeably increased the comprehension of vitamin E intestinal transport, but additional investigations are still required to fully appreciate the mechanisms governing vitamin E bioavailability. © 2018 IUBMB Life, 71(4):416-423, 2019.


Asunto(s)
Enterocitos/metabolismo , Absorción Intestinal , Vitamina E/farmacocinética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Disponibilidad Biológica , Transporte Biológico , Antígenos CD36/metabolismo , Quilomicrones/metabolismo , Enterocitos/efectos de los fármacos , Humanos , Proteínas de Transporte de Membrana/metabolismo
5.
J Lipid Res ; 59(9): 1640-1648, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021760

RESUMEN

Abetalipoproteinemia (ABL) and chylomicron retention disease (CMRD) are extremely rare recessive forms of hypobetalipoproteinemia characterized by intestinal lipid malabsorption and severe vitamin E deficiency. Vitamin E is often supplemented in the form of fat-soluble vitamin E acetate, but fat malabsorption considerably limits correction of the deficiency. In this crossover study, we administered two different forms of vitamin E, tocofersolan (a water-soluble derivative of RRR-α-tocopherol) and α-tocopherol acetate, to three patients with ABL and four patients with CMRD. The aims of this study were to evaluate the intestinal absorption characteristics of tocofersolan versus α-tocopherol acetate by measuring the plasma concentrations of α-tocopherol over time after a single oral load and to compare efficacy by evaluating the ability of each formulation to restore vitamin E storage after 4 months of treatment. In patients with ABL, tocofersolan and α-tocopherol acetate bioavailabilities were extremely low (2.8% and 3.1%, respectively). In contrast, bioavailabilities were higher in patients with CMRD (tocofersolan, 24.7%; α-tocopherol acetate, 11.4%). Plasma concentrations of α-tocopherol at 4 months were not significantly different by formulation type in ABL or CMRD. This study provides new insights about vitamin E status in ABL and CMRD and suggests the potential of different formulations as treatment options.


Asunto(s)
Abetalipoproteinemia/metabolismo , Hipobetalipoproteinemias/metabolismo , Síndromes de Malabsorción/metabolismo , Vitamina E/farmacocinética , alfa-Tocoferol/farmacocinética , Adulto , Disponibilidad Biológica , Estudios de Casos y Controles , Composición de Medicamentos , Almacenaje de Medicamentos , Femenino , Humanos , Absorción Intestinal , Masculino , Persona de Mediana Edad , Seguridad , Vitamina E/sangre , Vitamina E/metabolismo , alfa-Tocoferol/sangre , alfa-Tocoferol/metabolismo
6.
J Nutr ; 146(12): 2421-2428, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27798339

RESUMEN

BACKGROUND: Most people require dietary vitamin D to achieve the recommended concentration of 25-hydroxyvitamin D [25(OH)D] in the blood. However, the response to vitamin D supplementation is highly variable among individuals. OBJECTIVE: We assessed whether the variability in cholecalciferol bioavailability was associated with single-nucleotide polymorphisms (SNPs) in candidate genes. METHODS: In a single-group design, 39 healthy adult men with a mean ± SD age of 33 ± 2 y and mean ± SD body mass index (in kg/m2) of 22.9 ± 0.3 were genotyped with the use of whole-genome microarrays. After an overnight fast, plasma 25(OH)D status was measured, and the subjects then consumed a meal that provided 5 mg cholecalciferol as a supplement. Plasma chylomicron cholecalciferol concentration was measured over 8 h, and cholecalciferol response was assessed by calculating the postprandial area under the curve. Partial least squares regression was used to test the association of SNPs in or near candidate genes (61 genes representing 3791 SNPs) with the postprandial cholecalciferol response. RESULTS: The postprandial chylomicron cholecalciferol concentration peaked at 5.4 h. The cholecalciferol response was extremely variable among individuals (CV: 47%). It correlated with the chylomicron triglyceride (TG) response (r = 0.60; P < 0.001) but not with the fasting plasma 25(OH)D concentration (r = 0.04; P = 0.83). A significant (P = 1.32 × 10-4) partial least squares regression model that included 17 SNPs in 13 genes (including 5 that have been associated with chylomicron TG response) was associated with the variance in the cholecalciferol response. CONCLUSION: In healthy men, there is a high interindividual variability in cholecalciferol bioavailability that is associated with a combination of SNPs located in or near genes involved in both vitamin D and lipid metabolism. This trial was registered at clinicaltrials.gov as NCT02100774.


Asunto(s)
Colecalciferol/farmacocinética , Polimorfismo de Nucleótido Simple , Adulto , Área Bajo la Curva , Disponibilidad Biológica , Colecalciferol/sangre , Colecalciferol/metabolismo , Análisis de los Alimentos , Genotipo , Humanos , Masculino , Comidas
7.
J Lipid Res ; 56(6): 1123-33, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25833688

RESUMEN

Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.


Asunto(s)
Antígenos CD36/metabolismo , Colesterol/metabolismo , Mucosa Intestinal/metabolismo , Lípidos/química , Receptores Depuradores de Clase B/metabolismo , Transporte Biológico/genética , Antígenos CD36/genética , Células CACO-2 , Colecalciferol/metabolismo , Ácidos Grasos/metabolismo , Humanos , Absorción Intestinal/genética , Micelas , Fosfolípidos/metabolismo , Proteínas/metabolismo , Receptores Depuradores de Clase B/genética , Resonancia por Plasmón de Superficie
8.
J Biol Chem ; 289(44): 30743-30752, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25228690

RESUMEN

Vitamin K1 (phylloquinone) intestinal absorption is thought to be mediated by a carrier protein that still remains to be identified. Apical transport of vitamin K1 was examined using Caco-2 TC-7 cell monolayers as a model of human intestinal epithelium and in transfected HEK cells. Phylloquinone uptake was then measured ex vivo using mouse intestinal explants. Finally, vitamin K1 absorption was compared between wild-type mice and mice overexpressing scavenger receptor class B type I (SR-BI) in the intestine and mice deficient in cluster determinant 36 (CD36). Phylloquinone uptake by Caco-2 cells was saturable and was significantly impaired by co-incubation with α-tocopherol (and vice versa). Anti-human SR-BI antibodies and BLT1 (a chemical inhibitor of lipid transport via SR-BI) blocked up to 85% of vitamin K1 uptake. BLT1 also decreased phylloquinone apical efflux by ∼80%. Transfection of HEK cells with SR-BI and CD36 significantly enhanced vitamin K1 uptake, which was subsequently decreased by the addition of BLT1 or sulfo-N-succinimidyl oleate (CD36 inhibitor), respectively. Similar results were obtained in mouse intestinal explants. In vivo, the phylloquinone postprandial response was significantly higher, and the proximal intestine mucosa phylloquinone content 4 h after gavage was increased in mice overexpressing SR-BI compared with controls. Phylloquinone postprandial response was also significantly increased in CD36-deficient mice compared with wild-type mice, but their vitamin K1 intestinal content remained unchanged. Overall, the present data demonstrate for the first time that intestinal scavenger receptors participate in the absorption of dietary phylloquinone.


Asunto(s)
Receptores Depuradores de Clase B/fisiología , Vitamina K 1/metabolismo , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células CACO-2 , Membrana Celular , Colesterol/metabolismo , Enterocitos/metabolismo , Células HEK293 , Humanos , Absorción Intestinal , Ratones , Micelas , Periodo Posprandial , Vitamina E/metabolismo
9.
Biochim Biophys Acta ; 1841(12): 1741-51, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25462452

RESUMEN

Vitamin E membrane transport has been shown to involve the cholesterol transporters SR-BI, ABCA1 and NPC1L1. Our aim was to investigate the possible participation of another cholesterol transporter in cellular vitamin E efflux: ABCG1. In Abcgl-deficient mice, vitamin E concentration was reduced in plasma lipoproteins whereas most tissues displayed a higher vitamin E content compared to wild-type mice. α- and γ-tocopherol efflux was increased in CHO cells overexpressing human ABCG1 compared to control cells. Conversely, α- and γ- tocopherol efflux was decreased in ABCG1-knockdown human cells (Hep3B hepatocytes and THP-1 macro- phages). Interestingly, α- and γ-tocopherol significantly downregulated ABCG1 and ABCA1 expression levels in Hep3B and THP-1, an effect confirmed in vivo in rats given vitamin E for 5 days. This was likely due to reduced LXR activation by oxysterols, as Hep3B cells and rat liver treated with vitamin E displayed a significantly reduced content in oxysterols compared to their respective controls. Overall, the present study reveals for the first time that ABCG1 is involved in cellular vitamin E efflux.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Lipoproteínas/metabolismo , Vitamina E/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/deficiencia , Transportadoras de Casetes de Unión a ATP/genética , Animales , Transporte Biológico , Células CHO , Cromanos/metabolismo , Cricetinae , Cricetulus , Regulación hacia Abajo , Humanos , Lipoproteínas/deficiencia , Hígado/metabolismo , Receptores X del Hígado , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Especificidad de Órganos , Receptores Nucleares Huérfanos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Transfección
10.
Food Chem ; 455: 139820, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917656

RESUMEN

The emulsification potential of plant-based emulsifiers, that is, pea (PPI) and lentil (LPI) proteins (4%), corn arabinoxylans (CAX, 1%), and legume protein-arabinoxylan mixtures (4% proteins + 0.15 or 0.9% CAX), was evaluated by assessing: the surface tension and potential of emulsifiers, emulsifier antinutritional contents, emulsion droplet size, emulsion physical stability, and vitamin E bioaccessibility from 10% oil-in-water emulsions. Tween 80 (2%) was used as a control. All emulsions presented small droplet sizes, both fresh and upon storage, except 4% LPI + 0.9% CAX emulsion that exhibited bigger droplet sizes (d(4,3) of approximately 18.76 µm vs 0.59 µm for the control) because of droplet bridging. Vitamin E bioaccessibility from emulsions stabilized with the combination of 4% PPI and either 0.15% or 0.9% CAX (28 ± 4.48% and 28.42 ± 3.87%, respectively) was not significantly different from that of emulsions stabilized with Tween 80 (43.56 ± 3.71%), whereas vitamin E bioaccessibility from emulsions stabilized with individual emulsifiers was significantly lower.


Asunto(s)
Digestión , Emulsionantes , Emulsiones , Vitamina E , Xilanos , Emulsionantes/química , Vitamina E/química , Emulsiones/química , Xilanos/química , Proteínas de Plantas/química , Disponibilidad Biológica , Humanos , Fabaceae/química , Lens (Planta)/química , Modelos Biológicos
11.
Food Res Int ; 180: 114073, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395550

RESUMEN

We investigated the effects of fatty acid/ monoglyceride type and amount on the absorption of fat-soluble vitamins. Micelles or vesicles made with either caprylic acid (CA) + monocaprylin (MC) or oleic acid (OA) + monoolein (MO) at low or high concentrations were infused in bile duct-ligated mice. Retinol + retinyl ester and γ-tocopherol intestinal mucosa contents were higher in mice infused with CA + MC than with OA + MO (up to + 350 % for vitamin A and up to + 62 %, for vitamin E; p < 0.05). Cholecalciferol intestinal mucosa content was the highest in mice infused with micelles with CA + MC at 5 mg/mL (up to + 105 %, p < 0.05). Retinyl ester plasma response was higher with mixed assemblies formed at low concentration of FA + MG compared to high concentration (up to + 1212 %, p < 0.05), while no difference in cholecalciferol and γ-tocopherol plasma responses were measured. No correlation between size or zeta potential and vitamin absorption was found. The impact of FA and MG on fat-soluble vitamin absorption thus differs from one vitamin to another and should be considered to formulate adequate vitamin oral or enteral supplements.


Asunto(s)
Caprilatos , Ácidos Grasos , Glicéridos , Monoglicéridos , Ratones , Animales , Ácidos Grasos/farmacología , gamma-Tocoferol , Ésteres de Retinilo/farmacología , Micelas , Absorción Intestinal , Vitaminas , Vitamina A/metabolismo , Colecalciferol , Ácido Oléico
12.
J Clin Lipidol ; 18(1): e105-e115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37989694

RESUMEN

BACKGROUND: Familial hypobetalipoproteinemias (FHBL) are rare genetic diseases characterized by lipid malabsorption. We focused on abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3), caused by mutations in microsomal triglyceride transfer protein (MTTP) and SAR1B genes, respectively. Treatments include a low-fat diet and high-dose fat-soluble vitamin supplementations. However, patients are not supplemented in carotenoids, a group of lipid-soluble pigments essential for eye health. OBJECTIVE: Our aim was to evaluate carotenoid absorption and status in the context of hypobetalipoproteinemia. METHODS: We first used knock-out Caco-2/TC7 cell models of FHBL-SD1 and FHBL-SD3 to evaluate carotenoid absorption. We then characterized FHBL-SD1 and FHBL-SD3 patient status in the main dietary carotenoids and compared it to that of control subjects. RESULTS: In vitro results showed a significant decrease in basolateral secretion of α- and ß-carotene, lutein, and zeaxanthin (-88.8 ± 2.2 % to -95.3 ± 5.8 %, -79.2 ± 4.4 % to -96.1 ± 2.6 %, -91.0 ± 4.5 % to -96.7 ± 0.3 % and -65.4 ± 3.6 % to -96.6 ± 1.9 %, respectively). Carotenoids plasma levels in patients confirmed significant deficiencies, with decreases ranging from -89 % for zeaxanthin to -98 % for α-carotene, compared to control subjects. CONCLUSION: Given the continuous loss in visual function despite fat-soluble vitamin treatment in some patients, carotenoid supplementation may be of clinical utility. Future studies should assess the correlation between carotenoid status and visual function in aging patients and investigate whether carotenoid supplementation could prevent their visual impairment.


Asunto(s)
Hipobetalipoproteinemias , Proteínas de Unión al GTP Monoméricas , Sindactilia , Humanos , Células CACO-2 , Zeaxantinas/metabolismo , Hipobetalipoproteinemias/genética , Carotenoides/metabolismo , Vitaminas , Lípidos , Proteínas de Unión al GTP Monoméricas/genética
13.
Biofactors ; 50(5): 957-966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38401051

RESUMEN

Aging and obesity are associated with a decrease in plasma 25-hydroxyvitamin D (25(OH)D) levels. In the context of a growing aging population and the rising incidence of obesity, we hypothesized that aging process, either independently or in combination with obesity, could influence vitamin D (VD) metabolism, consequently resulting in the reduced 25(OH)D plasma concentrations. C57BL/6JRJ young (6 months) and old (23 months) mice fed with control (CD) or high fat diet (HF) were compared. Plasma and adipose concentration of cholecalciferol and 25(OH)D and mRNA expression of genes coding for the main VD actors were analyzed. Aging was associated with a decrease in plasma 25(OH)D levels, whereas combined effect of obesity and aging did not generate a cumulative effect on plasma 25(OH)D levels. The mRNA expression of Cyp27a1, Cyp3a11, and Cyp2j6 were decreased in the liver during aging. Together, these regulations could explain the reduced 25-hydroxylation. Interestingly, the lack of cumulative reduction of 25(OH)D in aged and obese mice could be related to the strong induction of Cyp2j6. In kidneys, a complex modulation of Cyp27b1 and Cyp24a1 could contribute to the reduced 25-hydroxylation in the liver. In white adipose tissue, an induction of Cyp2r1 was observed during aging and obesity, together with an increase of 25(OH)D quantity, suggesting an exacerbated storage that may participated to the reduced plasma 25(OH)D levels. These findings support the notion that aging alone or combined with obesity, induces regulation of VD metabolism in the organs, beyond the classical reduction of epidermal VD precursor, which may contribute to the decrease in 25(OH)D levels.


Asunto(s)
Envejecimiento , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Vitamina D , Animales , Obesidad/metabolismo , Obesidad/genética , Vitamina D/sangre , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Envejecimiento/metabolismo , Envejecimiento/genética , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Colecalciferol/metabolismo , Tejido Adiposo/metabolismo
14.
Front Nutr ; 11: 1385232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38769988

RESUMEN

In recent decades, scarcity of available resources, population growth and the widening in the consumption of processed foods and of animal origin have made the current food system unsustainable. High-income countries have shifted towards food consumption patterns which is causing an increasingly process of environmental degradation and depletion of natural resources, with the increased incidence of malnutrition due to excess (obesity and non-communicable disease) and due to chronic food deprivation. An urgent challenge is, therefore, to move towards more healthy and sustainable eating choices and reorientating food production and distribution to obtain a human and planetary health benefit. In this regard, legumes represent a less expensive source of nutrients for low-income countries, and a sustainable healthier option than animal-based proteins in developed countries. Although legumes are the basis of many traditional dishes worldwide, and in recent years they have also been used in the formulation of new food products, their consumption is still scarce. Common beans, which are among the most consumed pulses worldwide, have been the focus of many studies to boost their nutritional properties, to find strategies to facilitate cultivation under biotic/abiotic stress, to increase yield, reduce antinutrients contents and rise the micronutrient level. The versatility of beans could be the key for the increase of their consumption, as it allows to include them in a vast range of food preparations, to create new formulations and to reinvent traditional legume-based recipes with optimal nutritional healthy characteristics.

15.
Sci Rep ; 14(1): 11908, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789472

RESUMEN

Common beans are a common staple food with valuable nutritional qualities, but their high contents in antinutritional factors (ANFs) can decrease the bioavailability of (i) fat-soluble micronutrients including carotenoids and (ii) minerals. Our objective was to select ANF-poor bean lines that would not interfere with carotenoid and mineral bioavailability. To achieve this objective, seeds of commercial and experimental Phaseolus vulgaris L. bean lines were produced for 2 years and the bean's content in ANFs (saponins, phytates, tannins, total polyphenols) was assessed. We then measured carotenoid bioaccessibility and mineral solubility (i.e. the fraction of carotenoid and mineral that transfer into the aqueous phase of the digesta and is therefore absorbable) from prepared beans using in vitro digestion. All beans contained at least 200 mg/100 g of saponins and 2.44 mg/100 g tannins. The low phytic acid (lpa) lines, lpa1 and lpa12 exhibited lower phytate levels (≈ - 80%, p = 0.007 and p = 0.02) than their control BAT-93. However, this decrease had no significant impact on mineral solubility. HP5/1 (lpa + phaseolin and lectin PHA-E free) bean line, induced an improvement in carotenoid bioaccessibility (i.e., + 38%, p = 0.02, and + 32%, p = 0.005, for phytofluene bioaccessibility in 2021 and 2022, respectively). We conclude that decrease in the phytate bean content should thus likely be associated to decreases in other ANFs such as tannins or polyphenols to lead to significant improvement of micronutrient bioaccessibility.


Asunto(s)
Disponibilidad Biológica , Carotenoides , Minerales , Phaseolus , Ácido Fítico , Solubilidad , Taninos , Phaseolus/química , Phaseolus/metabolismo , Carotenoides/análisis , Carotenoides/metabolismo , Ácido Fítico/análisis , Minerales/análisis , Taninos/análisis , Semillas/química , Semillas/metabolismo , Polifenoles/análisis , Valor Nutritivo , Saponinas/análisis
16.
J Nutr ; 143(4): 448-56, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23427331

RESUMEN

Scavenger receptor class B type I (SR-BI) and cluster determinant 36 (CD36) have been involved in cellular uptake of some provitamin A carotenoids. However, data are incomplete (e.g., there are no data on α-carotene), and it is not known whether genetic variants in their encoding genes can affect provitamin A carotenoid status. The objectives were 1) to assess the involvement of these scavenger receptors in cellular uptake of the main provitamin A carotenoids (i.e., ß-carotene, α-carotene, and ß-cryptoxanthin) as well as that of preformed vitamin A (i.e., retinol) and 2) to investigate the contribution of genetic variations in genes encoding these proteins to interindividual variations in plasma concentrations of provitamin A carotenoids. The involvement of SR-BI and CD36 in carotenoids and retinol cellular uptake was investigated in Caco-2 and human embryonic kidney (HEK) cell lines. The involvement of scavenger receptor class B type I (SCARB1) and CD36 genetic variants on plasma concentrations of provitamin A carotenoids was assessed by association studies in 3 independent populations. Cell experiments suggested the involvement of both proteins in cellular uptake of provitamin A carotenoids but not in that of retinol. Association studies showed that several plasma provitamin A carotenoid concentrations were significantly different (P < 0.0083) between participants who bore different genotypes at single nucleotide polymorphisms and haplotypes in CD36 and SCARB1. In conclusion, SR-BI and CD36 are involved in cellular uptake of provitamin A carotenoids, and genetic variations in their encoding genes may modulate plasma concentrations of provitamin A carotenoids at a population level.


Asunto(s)
Antígenos CD36/genética , Antígenos CD36/fisiología , Carotenoides/sangre , Carotenoides/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/fisiología , Adolescente , Células CACO-2 , Estudios Transversales , Criptoxantinas , Femenino , Variación Genética , Genotipo , Células HEK293 , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Factores Sexuales , Vitamina A/metabolismo , Xantófilas/sangre , Xantófilas/metabolismo , beta Caroteno/sangre , beta Caroteno/metabolismo
17.
Prog Lipid Res ; 89: 101208, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493998

RESUMEN

It is now well established that vitamins D, E, and K and carotenoids are not absorbed solely through passive diffusion. Broad-specificity membrane transporters such as SR-BI (scavenger receptor class B type I), CD36 (CD36 molecule), NPC1L1 (Niemann Pick C1-like 1) or ABCA1 (ATP-binding cassette A1) are involved in the uptake of these micronutrients from the lumen to the enterocyte cytosol and in their secretion into the bloodstream. Recently, the existence of efflux pathways from the enterocyte back to the lumen or from the bloodstream to the lumen, involving ABCB1 (P-glycoprotein/MDR1) or the ABCG5/ABCG8 complex, has also been evidenced for vitamins D and K. Surprisingly, no membrane proteins have been involved in dietary vitamin A uptake so far. After an overview of the metabolism of fat-soluble vitamins and carotenoids along the gastrointestinal tract (from the mouth to the colon where interactions with microbiota may occur), a focus is placed on the identified and candidate proteins participating in the apical uptake, intracellular transport, basolateral secretion and efflux back to the lumen of fat-soluble vitamins and carotenoids in enterocytes. This review also highlights the mechanisms that remain to be identified to fully unravel the pathways involved in fat-soluble vitamin and carotenoid intestinal absorption.


Asunto(s)
Intestinos , Proteínas de Transporte de Membrana , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Vitaminas , Vitamina A/metabolismo , Carotenoides/metabolismo
18.
Food Chem ; 402: 133922, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162171

RESUMEN

In vitro experiments showed that i) phytates, tannins and saponins from pulses can alter vitamin D and K bioavailability and ii) meat decreased vitamin D bioaccessibility by impairing its stability during digestion. We aimed to confirm these results in vivo by force-feeding mice with emulsions containing either potatoes or semolina or chickpeas or meat. Vitamin D and K plasma responses decreased after a gavage with chickpeas or meat compared with potatoes (-62 % and -67 %, respectively for vitamin D, -40 % and -64 %, respectively for vitamin K; p < 0.05). Vitamin D and K intestinal contents were also reduced in mice force-fed with chickpeas or meat compared with potatoes (from -64 to -83 % and from -76 to -84 %, respectively for vitamin D and from -7 to -59 % and from -7 to -90 %, respectively for vitamin K; p < 0.05). The results confirm that chickpea and meat compounds can decrease vitamin D and K bioavailability.


Asunto(s)
Saponinas , Vitamina D , Ratones , Animales , Emulsiones , Vitaminas , Carne/análisis , Almidón , Vitamina K , Taninos
19.
Nutrients ; 15(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771214

RESUMEN

Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic complications. Currently, treatment combines a low-fat diet with high-dose vitamin A and E supplementation but still fails in normalizing serum vitamin E levels and providing complete ophthalmic protection. To explore these persistent complications, we developed two knock-out cell models of FHBL-SD1 and FHBL-SD3 using the CRISPR/Cas9 technique in Caco-2/TC7 cells. DNA sequencing, RNA quantification and Western blotting confirmed the introduction of mutations with protein knock-out in four clones associated with i) impaired lipid droplet formation and ii) defective triglyceride (-57.0 ± 2.6% to -83.9 ± 1.6%) and cholesterol (-35.3 ± 4.4% to -60.6 ± 3.5%) secretion. A significant decrease in α-tocopherol secretion was also observed in these clones (-41.5 ± 3.7% to -97.2 ± 2.8%), even with the pharmaceutical forms of vitamin E: tocopherol-acetate and tocofersolan (α-tocopheryl polyethylene glycol succinate 1000). MTTP silencing led to a more severe phenotype than SAR1B silencing, which is consistent with clinical observations. Our cellular models thus provide an efficient tool to experiment with therapeutic strategies and will allow progress in understanding the mechanisms involved in lipid metabolism.


Asunto(s)
Hipobetalipoproteinemias , Proteínas de Unión al GTP Monoméricas , Humanos , alfa-Tocoferol , Apolipoproteínas B/genética , Células CACO-2 , Enterocitos/metabolismo , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Vitamina E/farmacología
20.
Nutrients ; 15(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299566

RESUMEN

The consumption of plant-based drinks (PBDs) in substitution for cow's milk (CM) is increasing due to concerns for human and planet health and animal welfare. The present review aims to analyze the main findings from intervention trials investigating the effect of PBDs in comparison with CM on markers of human health. Suitable articles published up to July 2022 were sourced from PubMed and Scopus databases. A total of 29 papers were collected, with 27 focusing on soy drinks (1 of which also evaluated the effects of an almond drink), while only 2 focused on rice drinks. Among studies focused on soy drinks, the most investigated factors were anthropometric parameters (n = 13), the lipid profile (n = 8), markers of inflammation and/or oxidative stress (n = 7), glucose and insulin responses (n = 6) and blood pressure (n = 4). Despite some evidence of a beneficial effect of PBDs, especially for the lipid profile, it was not possible to draw any overall conclusions due to some conflicting results. As well as the low number of studies, a wide heterogeneity was found in terms of the characteristics of subjects, duration and markers, which reduces the strength of the available results. In conclusion, further studies are needed to better elucidate the effects of substituting CM with PBDs, especially in the long term.


Asunto(s)
Glucosa , Leche , Animales , Femenino , Bovinos , Humanos , Adulto , Antropometría , Presión Sanguínea , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA