Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Arch Biochem Biophys ; 688: 108389, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32387178

RESUMEN

The hydroxymethylpyrimidine phosphate kinases (HMPPK) encoded by the thiD gene are involved in the thiamine biosynthesis pathway, can perform two consecutive phosphorylations of 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) and are found in thermophilic and mesophilic bacteria, but only a few characterizations of mesophilic enzymes are available. The presence of another homolog enzyme (pyridoxal kinase) that can only catalyze the first phosphorylation of HMP and encoded by pdxK gene, has hampered a precise annotation in this enzyme family. Here we report the kinetic characterization of two HMPPK with structure available, the mesophilic and thermophilic enzyme from Salmonella typhimurium (StHMPPK) and Thermus thermophilus (TtHMPPK), respectively. Also, given their high structural similarity, we have analyzed the structural determinants of protein thermal stability in these enzymes by molecular dynamics simulation. The results show that pyridoxal kinases (PLK) from gram-positive bacteria (PLK/HMPPK-like enzymes) constitute a phylogenetically separate group from the canonical PLK, but closely related to the HMPPK, so the PLK/HMPPK-like and canonical PLK, both encoded by pdxK genes, are different and must be annotated distinctly. The kinetic characterization of StHMPPK and TtHMPPK, shows that they perform double phosphorylation on HMP, both enzymes are specific for HMP, not using pyridoxal-like molecules as substrates and their kinetic mechanism involves the formation of a ternary complex. Molecular dynamics simulation shows that StHMPPK and TtHMPPK have striking differences in their conformational flexibility, which can be correlated with the hydrophobic packing and electrostatic interaction network given mainly by salt bridge bonds, but interestingly not by the number of hydrogen bond interactions as reported for other thermophilic enzymes. ENZYMES: EC 2.7.1.49, EC 2.7.4.7, EC 2.7.1.35, EC 2.7.1.50.


Asunto(s)
Proteínas Bacterianas/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Proteínas Bacterianas/aislamiento & purificación , Pruebas de Enzimas , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación de Dinámica Molecular , Fosfotransferasas (Aceptor del Grupo Fosfato)/aislamiento & purificación , Conformación Proteica , Estabilidad Proteica , Pirimidinas/química , Salmonella typhimurium/enzimología , Electricidad Estática , Especificidad por Sustrato , Thermus thermophilus/enzimología
2.
J Chem Inf Model ; 60(2): 898-914, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31804819

RESUMEN

Protein kinase A has become a model system for the study of kinases, and therefore, a comprehensive understanding of the underlying molecular mechanisms in its catalytic cycle is of crucial importance. One of the aspects that has received recent attention is the role that metal cofactors play in the catalytic cycle. Although Mg2+ is the well-known physiological ion used by protein kinases, Ca2+ ions can also assist the phosphoryl transfer reaction but with lower catalytic activities. This inhibitory effect has been attributed to the ability of Ca2+ to trap the reaction products at the active site, and it has been proposed as a possible regulatory mechanism of the enzyme. Thus, in order to get a clearer understanding of these molecular events, computational simulations in the product state of PKA, in the presence of Mg2+ and Ca2+ ions, were performed through molecular dynamics (MD). Different protonation states of the active site were considered in order to model the different mechanistic pathways that have been proposed. Our results show that different protonation states of the phosphorylated serine residue at the peptide substrate (pSer21), as well as the protonation state of residue Asp166, can have a marked influence on the flexibility of regions surrounding the active site. This is the case of the glycine-rich loop, a structural motif that is directly involved in the release of the products from the PKA active site. MD simulations were capable to reproduce the crystallographic conformations but also showed other conformations not previously reported in the crystal structures that may be involved in enhancing the affinity of pSP20 to PKA in the presence of Ca2+. Hydrogen bonding interactions at the PKA-pSP20 interface were influenced whether by the protonation state of the active site or by the metal cofactor used by the enzyme. Altogether, our results provide molecular aspects into the inhibitory mechanism of Ca2+ in PKA and suggest which is the most probable protonation state of the phosphorylated product at the active site.


Asunto(s)
Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Simulación de Dinámica Molecular , Magnesio/metabolismo , Conformación Proteica
3.
PLoS One ; 14(9): e0215793, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31483779

RESUMEN

Cyclin-dependent kinase 2 (CDK2) is an important member of the CDK family exerting its most important function in the regulation of the cell cycle. It catalyzes the transfer of the gamma phosphate group from an ATP (adenosine triphosphate) molecule to a Serine/Threonine residue of a peptide substrate. Due to the importance of this enzyme, and protein kinases in general, a detailed understanding of the reaction mechanism is desired. Thus, in this work the phosphoryl transfer reaction catalyzed by CDK2 was revisited and studied by means of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. Our results suggest that the base-assisted mechanism is preferred over the substrate-assisted pathway when one Mg2+ is present in the active site, in agreement with a previous theoretical study. The base-assisted mechanism resulted to be dissociative, with a potential energy barrier of 14.3 kcal/mol, very close to the experimental derived value. An interesting feature of the mechanism is the proton transfer from Lys129 to the phosphoryl group at the second transition state, event that could be helping in neutralizing the charge on the phosphoryl group upon the absence of a second Mg2+ ion. Furthermore, important insights into the mechanisms in terms of bond order and charge analysis were provided. These descriptors helped to characterize the synchronicity of bond forming and breaking events, and to characterize charge transfer effects. Local interactions at the active site are key to modulate the charge distribution on the phosphoryl group and therefore alter its reactivity.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Modelos Químicos , Modelos Moleculares , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Fosforilación , Conformación Proteica , Teoría Cuántica , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Comput Struct Biotechnol J ; 17: 1066-1074, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452859

RESUMEN

Lignin peroxidase (LiP) and its natural substrate veratryl alcohol (VA) play a crucial role in lignin degradation by white-rot fungi. Understanding the molecular determinants for the interaction of this enzyme with its substrates is essential in the rational design of engineered peroxidases for biotechnological application. Here, we combine computational and experimental approaches to analyze the interaction of Phanerochaete chrysosporium LiP (isoenzyme H8) with VA and its radical cation (VA•+, resulting from substrate oxidation by the enzyme). Interaction energy calculations at semiempirical quantum mechanical level (SQM) between LiP and VA/VA•+ enabled to identify those residues at the acidic environment of catalytic Trp171 involved in the main interactions. Then, a battery of variants, with single and multiple mutations at these residues (Glu168, Asp165, Glu250, Asp264, and Phe267), was generated by directed mutagenesis, and their kinetics parameters were estimated on VA and two additional substrates. The experimental results show that Glu168 and Glu250 are crucial for the binding of VA, with Glu250 also contributing to the turnover of the enzyme. The experimental results were further rationalized through new calculations of interaction energies between VA/VA•+ and LiP with each of the single mutations. Finally, the delocalization of spin density was determined with quantum mechanics/molecular mechanics calculations (QM/MM), further supporting the contribution of Glu250 to VA oxidation at Trp171.

5.
Chem Sci ; 10(10): 2882-2892, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30996866

RESUMEN

Phosphofructokinases (Pfks) catalyze the ATP-dependent phosphorylation of fructose-6-phosphate (F6P) and they are regulated in a wide variety of organisms. Although numerous aspects of the kinetics and regulation have been characterized for Pfks, the knowledge about the mechanism of the phosphoryl transfer reaction and the transition state lags behind. In this work, we describe the X-ray crystal structure of the homodimeric Pfk-2 from E. coli, which contains products in one site and reactants in the other, as well as an additional ATP molecule in the inhibitory allosteric site adjacent to the reactants. This complex was previously predicted when studying the kinetic mechanism of ATP inhibition. After removing the allosteric ATP, molecular dynamic (MD) simulations revealed conformational changes related to domain packing, as well as stable interactions of Lys27 and Asp256 with donor (ATP) and acceptor (fructose-6-) groups, and of Asp166 with Mg2+. The phosphoryl transfer reaction mechanism catalyzed by Pfk-2 was investigated through Quantum Mechanics/Molecular Mechanics (QM/MM) simulations using a combination of the string method and a path-collective variable for the exploration of its free energy surface. The calculated activation free energies showed that a dissociative mechanism, occurring with a metaphosphate intermediate formation followed by a proton transfer to Asp256, is more favorable than an associative one. The structural analysis reveals the role of Asp256 acting as a catalytic base and Lys27 stabilizing the transition state of the dissociative mechanism.

6.
Nanoscale ; 10(34): 15911-15917, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30106074

RESUMEN

The interaction of a terminal tryptophan residue within collagen mimetic peptides when tethered to nanometric silver surfaces was studied using a combination of steady state spectroscopy, ultrafast spectroscopy, and molecular dynamics experiments. Our findings indicate that the effective interaction between the tryptophan and the metal surface occurs in short-time scales (ps) and it is responsible for improving the colloidal stability of the nanoparticles exposed to free radicals. The extent and efficiency of the interaction depends on factors beyond the peptide length that include conformation and distance from the terminal tryptophan to the metal surface.


Asunto(s)
Nanopartículas del Metal/química , Péptidos/química , Especies Reactivas de Oxígeno/química , Plata/química , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA