Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742906

RESUMEN

Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal-oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Biopelículas , Vesícula Biliar , Humanos , Virulencia
2.
Molecules ; 26(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063685

RESUMEN

Multidrug resistant bacteria create a challenging situation for society to treat infections. Multidrug resistance (MDR) is the reason for biofilm bacteria to cause chronic infection. Plant-based nanoparticles could be an alternative solution as potential drug candidates against these MDR bacteria, as many plants are well known for their antimicrobial activity against pathogenic microorganisms. Spondias mombin is a traditional plant which has already been used for medicinal purposes as every part of this plant has been proven to have its own medicinal values. In this research, the S. mombin extract was used to synthesise AgNPs. The synthesized AgNPs were characterized and further tested for their antibacterial, reactive oxygen species and cytotoxicity properties. The characterization results showed the synthesized AgNPs to be between 8 to 50 nm with -11.52 of zeta potential value. The existence of the silver element in the AgNPs was confirmed with the peaks obtained in the EDX spectrometry. Significant antibacterial activity was observed against selected biofilm-forming pathogenic bacteria. The cytotoxicity study with A. salina revealed the LC50 of synthesized AgNPs was at 0.81 mg/mL. Based on the ROS quantification, it was suggested that the ROS production, due to the interaction of AgNP with different bacterial cells, causes structural changes of the cell. This proves that the synthesized AgNPs could be an effective drug against multidrug resistant bacteria.


Asunto(s)
Anacardiaceae/química , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nanopartículas del Metal/química , Plata/química , Animales , Artemia , Bacterias/efectos de los fármacos , Tecnología Química Verde , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Nanomedicina , Extractos Vegetales/farmacología , Hojas de la Planta/química , Especies Reactivas de Oxígeno , Rayos Ultravioleta
3.
Molecules ; 25(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521624

RESUMEN

Alocasia longiloba, locally known as 'Keladi Candik', has been used traditionally to treat wounds, furuncle and joint inflammations. A. longiloba can be a new source of herbal medicine against hyperuricemia by inhibiting the activity of xanthine oxidase enzyme, the enzyme which is responsible for the development of hyperuricemia in human. Existing xanthine oxidase inhibitors (XOI drugs) show several side effects on gout patients. Therefore, an alternative herbal medicine from plants, with high therapeutic property and free of side effects, are greatly needed. This study was conducted to evaluate XO inhibitory activity, chemical composition, antioxidant activity and GC-MS profile of A. longiloba. Our results showed that ethanolic petiole extract exhibited the highest XO inhibitory activity (70.40 ± 0.05%) with IC50 value of 42.71 µg/mL, followed by ethanolic fruit extracts (61.44 ± 1.24%) with the IC50 value of 51.32 µg/mL. In a parallel study, the phytochemical analysis showed the presence of alkaloid, flavonoid, terpenoids, glycoside and saponin in petiole and fruit extracts, as well as higher total phenolic and flavonoid contents and strong scavenging activity on DPPH and ABTS antioxidant assay. The GC-MS analysis of fruit and petiole extracts revealed the presence of various compounds belonging to different chemical nature, among them are limonen-6-ol, α-DGlucopyranoside, paromomycin, aziridine, phenol, Heptatriacotanol, Phen-1,2,3-dimethyl and Betulin found in ethanolic fruit extract, and Phen-1,4-diol,2,3-dimethyl-, 1-Ethynyl-3,trans(1,1-dimethylethyl), Phenol,2,6-dimethoxy-4-(2-propenyl)- and 7-Methyl-Z-tetradecen-1-olacetate found in ethanolic petiole extract. Some compounds were documented as potent anti-inflammatory and arthritis related diseases by other researchers. In this study, the efficiency of solvents to extract bioactives was found to be ethanol > water, methanol > hexane > chloroform. Together, our results suggest the prospective utilization of fruit and petiole of A. longiloba to inhibit the activity of XO enzyme.


Asunto(s)
Alocasia/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Cromatografía de Gases y Espectrometría de Masas/métodos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Xantina Oxidasa/antagonistas & inhibidores , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Xantina Oxidasa/metabolismo
4.
Materials (Basel) ; 15(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35591502

RESUMEN

Periimplantitis due to pathogenic bacteria is considered as a major cause for dental implants failures. Biogenic zinc oxide nanoparticles (ZnPs) are known to inhibit periimplantitis triggering pathogens. The current investigation intended to perform ZnPs biosynthesis and evaluation against periimplantitis triggering bacteria. The current study involved ZnPs biosynthesis using Andrographis paniculata leaves aqueous extract (APLAE), followed by optimization, stability, characterization, and in vitro evaluation against periimplantitis triggering bacteria. The experimental results indicated the success of ZnPs biosynthesis based on the optimization of zinc acetate (1.5 g), plant extract (5 mL), pH 12, and temperature (25 °C), and using the stability study (absorbance between 365-370 nm) and characterization data exhibiting broad and shifted bands (in FTIR spectrum), the size was found to be below 98.61 nm (determined by FESEM and XRD spectra) and 71.54% zinc was observed in the EDX spectrum. Biogenic ZnPs exhibited a high inhibitory activity against periimplantitis-triggering pathogens (E. coli and S. aureus). Based on the experimental results, the present study concludes that biogenic ZnPs possess a high inhibitory potential against periimplantitis-triggering bacteria, and it is established that the biosynthesis of ZnPs using APLAE is a useful method.

5.
Biomolecules ; 11(2)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572968

RESUMEN

Continuously increasing energy demand and growing concern about energy resources has attracted much research in the field of clean and sustainable energy sources. In this context, zero-emission fuels are required for energy production to reduce the usage of fossil fuel resources. Here, we present the synthesis of Pd-Ag-decorated reduced graphene oxide (rGO) nanostructures using a green chemical approach with stevia extract for hydrogen production and antibacterial studies under light irradiation. Moreover, bimetallic nanostructures are potentially lime lighted due to their synergetic effect in both scientific and technical aspects. Structural characteristics such as crystal structure and morphological features of the synthesized nanostructures were analyzed using X-ray diffraction and transmission electron microscopy. Analysis of elemental composition and oxidation states was carried out by X-ray photoelectron spectroscopy. Optical characteristics of the biosynthesized nanostructures were obtained by UV-Vis absorption spectroscopy, and Fourier transform infrared spectroscopy was used to investigate possible functional groups that act as reducing and capping agents. The antimicrobial activity of the biosynthesized Pd-Ag-decorated rGO nanostructures was excellent, inactivating 96% of Escherichia coli cells during experiments over 150 min under visible light irradiation. Hence, these biosynthesized Pd-Ag-decorated rGO nanostructures can be utilized for alternative nanomaterial-based drug development in the future.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Nanocompuestos/química , Paladio/química , Fotoquímica/métodos , Fitoterapia/métodos , Hojas de la Planta/metabolismo , Plata/química , Stevia/metabolismo , Catálisis , Citoplasma/metabolismo , Diseño de Fármacos , Escherichia coli/metabolismo , Grafito/química , Tecnología Química Verde , Hidrógeno/química , Luz , Metales , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Nanomedicina/métodos , Nanoestructuras/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Nanomaterials (Basel) ; 11(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34835682

RESUMEN

Due to modernization and the scarcity of fossil fuel resources, energy demand is continuously increasing. In this regard, it is essential and necessary to create a renewable energy source that can meet future energy demands. Recently, the production of H2 by water splitting and removing pollutants from the water has been essential for issues of energy and environmental demands. Herein, g-C3N4 and Ag-g-C3N4 composite structures have been successfully fabricated by the ultrasonication method. The physio/photochemical properties of prepared g-C3N4 and Ag-g-C3N4 were examined with different analytical techniques such as FTIR, XRD, UV-DRS, SEM, TEM, PL, and XPS analyses. The silver quantum dots (QDS) anchored to g-C3N4 structures performed the profound photocatalytic activities of H2 production, dye degradation, and antimicrobial activity under visible-light irradiation. The Ag/g-C3N4 composite with an Ag loading of 0.02 mole has an optimum photoactivity at 335.40 µmol g-1 h-1, which is superior to other Ag loading g-C3N4 composites. The synthesized Ag/g-C3N4 nanoparticles showed potential microbial inhibition activity during the preliminary screening, and the inhibition zones were comparable to the commercial antibiotic chloramphenicol. The loading of Ag into g-C3N4 paves the suppression, recombination and transfer of photo-generated electron-hole pairs, leading to the enhancement of hydrogen production, the diminishment of pollutants in water under visible light irradiation, and antimicrobial activity against multidrug-resistant pathogens.

7.
Biomolecules ; 9(12)2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756993

RESUMEN

We optimized culture conditions using Bacillus sp. FBL-2 as a poly-(γ-glutamic acid) (PGA) producing strain isolated from cheonggukjang. All experiments were performed under aerobic conditions using a laboratory scale 2.5 L fermentor. We investigated the effects of fermentation parameters (temperature, pH, agitation, and aeration) and medium components (glutamic acid, citric acid, and yeast extract) on poly-(γ-glutamic acid) production, viscosity, and dry cell mass. A non-optimized fermentation method (1.5 vvm, 350 rpm, and 37 °C) yielded PGA, viscosity, and dry cell mass at levels of 100.7 g/L, 483.2 cP, and 3.4 g/L, respectively. L-glutamic acid, citric acid, and yeast extract supplementation enhanced poly-(γ-glutamic acid) production to 175.9 g/L. Additionally, the production of poly-(γ-glutamic acid) from rice bran and wheat bran was assessed using response surface methodology (central composite rotatable design). Agricultural byproducts (rice bran and wheat bran) and H2SO4 were selected as factors, and experiments were performed by combining various component concentrations to determine optimal component concentrations. Our experimentally-derived optimal parameters included 38.6 g/L of rice bran, 0.42% of H2SO4, 28.0 g/L of wheat bran, and 0.32% of H2SO4. Under optimum conditions, rice bran medium facilitated poly-(γ-glutamic acid) production of up to 22.64 g/L, and the use of wheat bran medium yielded up to 14.6 g/L. Based on a validity test using the optimized culture conditions, poly-(γ-glutamic acid) was produced at 47.6 g/L and 36.4 g/L from these respective mediums, and both results were higher than statistically predicted. This study suggests that rice bran can be used as a potential alternative substrate for poly-(γ-glutamic acid) production.


Asunto(s)
Bacillus/metabolismo , Microbiología Industrial/métodos , Oryza/microbiología , Ácido Poliglutámico/análogos & derivados , Triticum/microbiología , Residuos/análisis , Agricultura , Bacillus/genética , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Fermentación , Ácido Poliglutámico/biosíntesis , Temperatura
8.
J Microbiol Biotechnol ; 29(7): 1061-1070, 2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31280522

RESUMEN

In the present study, the optimization of poly(γ-glutamic acid) (γ-PGA) production by Bacillus sp. FBL-2 was studied using a statistical approach. One-factor-at-a-time method was used to investigate the effect of carbon sources and nitrogen sources on γ-PGA production and was utilized to select the most significant nutrients affecting the yield of γ-PGA. After identifying effective nutrients, response surface methodology with central composite design (CCD) was used to obtain a mathematical model to identify the optimum concentrations of the key nutrients (sucrose, L-glutamic acid, yeast extract, and citric acid) for improvement of γ-PGA production. The optimum amount of significant medium components appeared to be sucrose 51.73 g/l, L-glutamic acid 105.30 g/l, yeast extract 13.25 g/l, and citric acid 10.04 g/l. The optimized medium was validated experimentally, and γ-PGA production increased significantly from 3.59 g/l (0.33 g/l/h) to 44.04 g/l (3.67 g/l/h) when strain FBL-2 was cultivated under the optimal medium developed by the statistical approach, as compared to non-optimized medium.


Asunto(s)
Bacillus/metabolismo , Ácido Poliglutámico/análogos & derivados , Análisis de Varianza , Ácido Cítrico , Medios de Cultivo/química , Fermentación , Ácido Glutámico , Modelos Teóricos , Nitrógeno , Ácido Poliglutámico/biosíntesis , Proyectos de Investigación , Sacarosa
9.
Nanomaterials (Basel) ; 9(12)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888164

RESUMEN

In this study, we reported the synthesis and characterization of a novel hyperbranched polymer (HBPs) tris[(4-phenyl)amino-alt-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene] (PTPABDT) composed of benzo[1,2-b:4,5-b']dithiophene (BDT) and triphenyleamine (TPA) constituent subunits by A3 + B2 type Stille's reaction. An estimated optical band gap of 1.69 eV with HOMO and LUMO levels of -5.29 eV and -3.60 eV, respectively, as well as a high thermal stability up to 398 °C were characterized for the synthesized polymer. PTPABDT fabricated as an encapsulated top gate/bottom contact (TGBC), organic field effect transistors (OFET) exhibited a p-type behavior with maximum field-effect mobility (µmax) and an on/off ratio of 1.22 × 10-3 cm2 V-1 s-1 and 7.47 × 102, respectively.

11.
Bioresour Technol ; 209: 187-94, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26970921

RESUMEN

Enterococcus faecalis RKY1 was used to produce l-lactic acid from hydrol, soybean curd residues (SCR), and malt. Hydrol was efficiently metabolized to l-lactic acid with optical purity of >97.5%, though hydrol contained mixed sugars such as glucose, maltose, maltotriose, and maltodextrin. Combined utilization of hydrol, SCR, and malt was enough to sustain lactic acid fermentation by E. faecalis RKY1. In order to reduce the amount of nitrogen sources and product inhibition, cell-recycle repeated-batch fermentation was employed, where a high cell mass (26.3g/L) was obtained. Lactic acid productivity was improved by removal of lactic acid from fermentation broth by membrane filtration and by linearly increased cell density. When the total of 10 repeated-batch fermentations were carried out using 100g/L hydrol, 150g/L SCR hydrolyzate, and 20g/L malt hydrolyzate as the main nutrients, lactic acid productivity was increased significantly from 3.20g/L/h to 6.37g/L/h.


Asunto(s)
Reactores Biológicos , Enterococcus faecalis/metabolismo , Ácido Láctico/biosíntesis , Agricultura , Metabolismo de los Hidratos de Carbono , Fermentación , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA