RESUMEN
Oncogenic activation of RAS genes via point mutations occurs in 20%-30% of human cancers. The development of effective RAS inhibitors has been challenging, necessitating new approaches to inhibit this oncogenic protein. Functional studies have shown that the switch region of RAS interacts with a large number of effector proteins containing a common RAS-binding domain (RBD). Because RBD-mediated interactions are essential for RAS signaling, blocking RBD association with small molecules constitutes an attractive therapeutic approach. Here, we present evidence that rigosertib, a styryl-benzyl sulfone, acts as a RAS-mimetic and interacts with the RBDs of RAF kinases, resulting in their inability to bind to RAS, disruption of RAF activation, and inhibition of the RAS-RAF-MEK pathway. We also find that ribosertib binds to the RBDs of Ral-GDS and PI3Ks. These results suggest that targeting of RBDs across multiple signaling pathways by rigosertib may represent an effective strategy for inactivation of RAS signaling.
Asunto(s)
Glicina/análogos & derivados , Proteínas de Unión al ARN/química , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/efectos de los fármacos , Cristalografía por Rayos X , Dimerización , Glicina/administración & dosificación , Glicina/química , Glicina/farmacología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Neoplasias Pancreáticas/tratamiento farmacológico , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Sulfonas/administración & dosificación , Sulfonas/química , Proteínas ras/metabolismo , Quinasa Tipo Polo 1RESUMEN
Rigosertib is a styryl benzyl sulfone that inhibits growth of tumor cells and acts as a RAS mimetic by binding to Ras binding domains of RAS effectors. A recent study attributed rigosertib's mechanism of action to microtubule binding. In that study, rigosertib was obtained from a commercial vendor. We compared the purity of clinical-grade and commercially sourced rigosertib and found that commercially sourced rigosertib contains approximately 5% ON01500, a potent inhibitor of tubulin polymerization. Clinical-grade rigosertib, which is free of this impurity, does not exhibit tubulin-binding activity. Cell lines expressing mutant ß-tubulin have also been reported to be resistant to rigosertib. However, our study showed that these cells failed to proliferate in the presence of rigosertib at concentrations that are lethal to wild-type cells. Rigosertib induced a senescence-like phenotype in the small percentage of surviving cells, which could be incorrectly scored as resistant using short-term cultures.
Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular , Glicina/análogos & derivados , Neoplasias Pulmonares/patología , Sulfonas/farmacología , Tubulina (Proteína)/metabolismo , Contaminación de Medicamentos , Resistencia a Antineoplásicos , Glicina/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Mutación , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Células Tumorales CultivadasRESUMEN
The B-myb (MYBL2) gene is a member of the MYB family of transcription factors and is involved in cell cycle regulation, DNA replication, and maintenance of genomic integrity. However, its function during adult development and hematopoiesis is unknown. We show here that conditional inactivation of B-myb in vivo results in depletion of the hematopoietic stem cell (HSC) pool, leading to profound reductions in mature lymphoid, erythroid, and myeloid cells. This defect is autonomous to the bone marrow and is first evident in stem cells, which accumulate in the S and G2/M phases. B-myb inactivation also causes defects in the myeloid progenitor compartment, consisting of depletion of common myeloid progenitors but relative sparing of granulocyte-macrophage progenitors. Microarray studies indicate that B-myb-null LSK(+) cells differentially express genes that direct myeloid lineage development and commitment, suggesting that B-myb is a key player in controlling cell fate. Collectively, these studies demonstrate that B-myb is essential for HSC and progenitor maintenance and survival during hematopoiesis.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Células Progenitoras Mieloides/fisiología , Transactivadores/metabolismo , Animales , Trasplante de Médula Ósea , Cruzamientos Genéticos , Cartilla de ADN/genética , Citometría de Flujo , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Several families of protein kinases have been shown to play a critical role in the regulation of cell cycle progression, particularly progression through mitosis. These kinase families include the Aurora kinases, the Mps1 gene product and the Polo Like family of protein kinases (PLKs). The PLK family consists of five members and of these, the role of PLK1 in human cancer is well documented. PLK2 (SNK), which is highly homologous to PLK1, has been shown to play a critical role in centriole duplication and is also believed to play a regulatory role in the survival pathway by physically stabilizing the TSC1/2 complex in tumor cells under hypoxic conditions. As a part of our research program, we have developed a library of novel ATP mimetic chemotypes that are cytotoxic against a panel of cancer cell lines. We show that one of these chemotypes, the 6-arylsulfonyl pyridopyrimidinones, induces apoptosis of human tumor cell lines in nanomolar concentrations. The most potent of these compounds, 7ao, was found to be a highly specific inhibitor of PLK2 when profiled against a panel of 288 wild type, 55 mutant and 12 lipid kinases. Here, we describe the synthesis, structure activity relationship, in vitro kinase specificity and biological activity of the lead compound, 7ao.
Asunto(s)
Descubrimiento de Drogas , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinonas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-ActividadRESUMEN
INTRODUCTION AND IMPORTANCE: Purtscher retinopathy is the rare form of occlusive microvasculopathy, characterized by multiple retinal white areas around the optic nerve head and fovea with paravascular clearing and may be related to intraretinal hemorrhages. Acute Pancreatitis (AP) is one of the most common gastrointestinal reasons for hospital admissions globally. The complications of Acute Pancreatitis may include Purtscher's-like retinopathy, which has a low incidence rate of less than 0.24 instances per million cases. This case report highlights the value of thorough medical history taking and examination, and it apprises the consideration of ophthalmological manifestation in patients of Acute Pancreatitis. CASE PRESENTATION: A 34-year-old female came to the emergency room due to intense abdominal pain associated with nausea and vomiting, which worsened over the last 24 h. The pain was described as continuous, sharp, and cramping-like in the upper abdomen, radiating to the back. Lab tests revealed elevated serum amylase and lipase levels, indicating pancreatitis, along with slight leukocytosis. A contrast-enhanced CT scan confirmed acute pancreatitis with mild inflammation and enlargement of the pancreas. Two days after admission, the patient experienced a sudden and painless loss of central vision in both eyes. There was no history of trauma or any other significant relevant history, other than pancreatitis. The ophthalmologist's examination found reduced visual acuity (6/60 in the right eye, 3/60 in the left eye), normal corneas, and anterior chambers. DISCUSSION: Inkeles and Walsh established the first link between acute pancreatitis and Purtscher-like retinopathy when they reported three cases of the distinctive retinal appearance in individuals with acute pancreatitis in 1975. CONCLUSION: The recovery and prognosis in cases of Purtscher-like retinopathy is variable and further research is required to ascertain the usage of corticosteroids and pentoxifylline in improving the course of a patient's with Purtscher's-like retinopathy.
RESUMEN
A stereoselective and efficient method for free radical addition of benzyl thiol to aryl acetylene in the presence of Et3B-hexane has been developed for the synthesis of (Z) and (E)-styryl benzyl sulfides where base catalyzed hydrothiolations have failed. The scope of this reaction was successfully extended for the synthesis of (E)-ON 01910·Na, a phase III clinical stage anti-cancer agent and its inactive geometrical isomer (Z)-ON 01910·Na. It is interesting to note that all the E-isomers synthesized have shown better cytotoxicity profile on cancer cells compared to the Z-isomers.
Asunto(s)
Alquinos/farmacología , Antineoplásicos/farmacología , Glicina/análogos & derivados , Compuestos de Sulfhidrilo/química , Sulfonas/farmacología , Alquinos/síntesis química , Alquinos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos Clínicos Fase III como Asunto , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glicina/síntesis química , Glicina/química , Glicina/farmacología , Humanos , Células K562 , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad , Sulfonas/síntesis química , Sulfonas/químicaRESUMEN
Elevated expression of polo-like kinase1 (Plk1) has been reported in many human tumors, and inhibition of Plk1 activity results in their mitotic arrest and apoptosis. Here we describe the profile of ON01910, a small molecule inhibitor of Plk1 activity, which induces mitotic arrest of tumor cells characterized by spindle abnormalities leading to their apoptosis. This compound was not ATP-competitive, but competed for the substrate binding site of the enzyme. In vivo, this compound did not exhibit hematotoxicity, liver damage, or neurotoxicity, and was a potent inhibitor of tumor growth in a variety of xenograft nude mouse models. ON01910 showed strong synergy with several chemotherapeutic agents, often inducing complete regression of tumors.
Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Huso Acromático/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidad , Apoptosis , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Ratones , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/genética , Huso Acromático/metabolismo , Quinasa Tipo Polo 1RESUMEN
A pharmacokinetic [PK]-driven screening process was implemented to select new agents for brain tumor chemotherapy from a series of low molecular weight anticancer agents [ON27x] that consisted of 141 compounds. The screening procedures involved a combination of in silico, in vitro and in vivo mouse studies that were cast into a pipeline of tier 1 and tier 2 failures that resulted in a final investigation of 2 analogues in brain tumor-bearing mice. Tier 1 failures included agents with a molecular weight of > 450 Da, a predicted log P (log P) of either <2 or > 3.5, and a cytotoxicity IC(50) value of > 2 uM. Next, 18 compounds underwent cassette dosing studies in normal mice that identified compounds with high systemic clearance, and low blood-brain barrier [BBB] penetration. These indices along with a derived parameter, referred to as the brain exposure index, comprised tier 2 failures that led to the administration of 2 compounds [ON27570, ON27740] as single agents [discrete dosing] to mice bearing intracerebral tumors. Comparison of ON27570's resultant PK parameters to those obtained in the cassette dosing format suggested a drug-drug interaction most likely at the level of BBB transport, and prompted the use of the in vitro MDCK-MDR1 transport model to help assess the nature of the discrepancy. Overall, the approach was able to identify candidate compounds with suitable PK characteristics yet further revisions to the method, such as the use of in vitro metabolism and transport assays, may improve the PK-directed approach to identify efficacious agents for brain tumor chemotherapy.
Asunto(s)
Amidas/farmacocinética , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/metabolismo , Amidas/farmacología , Animales , Antineoplásicos/farmacología , Proteínas Sanguíneas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Perros , Ensayos de Selección de Medicamentos Antitumorales , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Desnudos , Modelos BiológicosRESUMEN
PURPOSE: To evaluate a mitotic inhibitor, ON01910.Na, as a potential chemotherapeutic agent for brain tumors using a series of PK/PD studies, which led to the evaluation of its structural analog, ON013105, a prodrug of the more lipophilic product, ON013100. METHODS: Systemic PK characterization of ON01910 and ON013105 was completed in healthy mice. Using an orthotopic U87 glioma mouse model, brain and brain tumor distribution under steady-state conditions were evaluated for ON01910.Na and ON013105/ON013100; anticancer potential following a multiple-dose schedule of 250 mg/kg/day IP for 7 days was evaluated for ON01910.Na. RESULTS: ON01910 exhibited low brain and brain tumor distribution with quasi-steady-state brain/plasma (Css(brain)/Css(plasma)) and brain tumor/plasma (Css(brain tumor)/Css(plasma)) concentration ratios of 0.03 ± 0.02 and 0.14 ± 0.08, respectively. Significant antiangiogenic potential and antiproliferative capacity of ON01910 in the intracerebral model was absent. ON013100 showed high brain and brain tumor penetration with Css(brain)/Css(plasma) and Css(brain tumor)/Css(plasma) ratios of 0.92 ± 0.26 and 1.35 ± 0.40, respectively; its prodrug ON013105 showed negligible brain and brain tumor penetration. CONCLUSIONS: ON013105, not ON01910.Na, was identified as a potential anticancer drug candidate for further investigation in brain tumor chemotherapy based on the properties of ON013100.
Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Cromatografía Liquida , Evaluación Preclínica de Medicamentos , Ratones , Espectrometría de Masas en TándemRESUMEN
Novel (E)-alpha-benzylthio chalcones are reported with preliminary in vitro activity data indicating that several of them are potent inhibitors (comparable to imatinib, the reference compound) of BCR-ABL phosphorylation in leukemic K562 cells, known to express high levels of BCR-ABL. The ability of such compounds to significantly inhibit K562 cell proliferation suggests that this scaffold could be a promising lead for the development of anticancer agents that are able to block BCR-ABL phosphorylation in leukemic cells.
Asunto(s)
Chalconas/síntesis química , Chalconas/farmacología , Diseño de Fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Chalconas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Células K562 , Estructura Molecular , Fosforilación , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
Ex-Rad is among a series of small molecule kinase inhibitors developed for modifying cell cycle distribution patterns in cancer cells subjected to radiation therapy, and it has been identified as a potential candidate for radiation protection studies. We have investigated its radioprotective efficacy using mouse and in vitro models. Thirty-day survival studies with C3H/HeN male mice revealed 88% survival when 500 mg/kg of Ex-Rad was injected subcutaneously 24 h and 15 min before gamma irradiation with 8.0 Gy. To understand Ex-Rad's mechanism of action, we also studied its radioprotective efficacy in lung fibroblast (HFL-1), skin fibroblast (AG1522) and human umbilical vein endothelial cells (HUVECs). Colony-forming assays indicated that Ex-Rad protected cells from radiation damage after exposure to (60)Co gamma radiation. A study using single-cell gel electrophoresis (SCGE; also known as the alkaline comet assay) showed that Ex-Rad protected cells from radiation-induced DNA damage. Western blot analyses indicated that the radiation protection provided by Ex-Rad resulted in reduced levels of pro-apoptosis proteins such as p53 as well as its downstream regulators p21, Bax, c-Abl and p73, indicating that Ex-Rad could rescue cells from ionizing radiation-induced p53-dependent apoptosis. In conclusion, it appears that Ex-Rad's radioprotective mechanisms involve prevention of p53-dependent and independent radiation-induced apoptosis.
Asunto(s)
Protectores contra Radiación/farmacología , Sulfonamidas/farmacología , Animales , Western Blotting , Células Cultivadas , Ensayo Cometa , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Regulación hacia Abajo , Humanos , Masculino , Ratones , Ratones Endogámicos C3HRESUMEN
Heterostructures developed using CeO2 show promising peculiarities in the field of metal oxide gas sensors due to the great variations in the resistance during the adsorption and desorption processes. NiO decorated CeO2 nanostructures (NiO/CeO2) were synthesized via a facile two-step process. High resolution transmission electron microscopy (HRTEM) results revealed the perfect decoration of NiO on the CeO2 surface. The porous nature of the NiO/CeO2 sensor surface was confirmed from scanning electron microscopy (SEM) analysis. Gas sensing studies of pristine CeO2 and NiO/CeO2 sensors were performed under room conditions and enhanced gas sensing properties for the NiO/CeO2 sensor towards isopropanol were observed. Decoration of NiO on the CeO2 surface develops a built-in potential at the interface of NiO and CeO2 which played a vital role in the superior sensing performance of the NiO/CeO2 sensor. Sharp response and recovery times (15 s/19 s) were observed for the NiO/CeO2 sensor towards 100 ppm isopropanol at room temperature. Long-term stability of the NiO/CeO2 sensor was also studied and discussed. From all the results it is concluded that the decoration of NiO on the CeO2 surface could significantly enhance the sensing performance and it has great advantages in designing best performing isopropanol gas sensors.
RESUMEN
ZnO/V2O5 nanocomposite thin films were synthesised by the spray pyrolysis technique with optimised deposition parameters by varying the concentration of vanadium pentoxide. The X-ray diffraction results showed that the ZnO/V2O5 nanocomposite thin films have a Wurtzite-type hexagonal ZnO structure. We attained crystal phases at all concentrations. These results indicated that the two crystal phases of pure zinc oxide and vanadium pentoxide exist together within the composite thin film matrix. The morphology was investigated with field emission scanning electron microscopy and transmission electron microscopy (TEM). The microstructures of the deposited thin films were confirmed by Raman spectroscopy. The optical characterizations of the prepared samples were investigated by using a UV-vis spectrophotometer. X-ray photoelectron spectroscopy (XPS) was carried out to confirm the oxidation states of the elements existing on the surface of the composite thin films. The gas-sensing properties of the composite thin films towards toluene gas were studied at the temperature of 27 °C. The sensing mechanism for toluene gas was reported; the response and recovery times were determined from the transient response curve and were found to be 24 s and 28 s, respectively, for the optimised composite film.
RESUMEN
Cell cycle progression is regulated by cyclins and cyclin-dependent kinases, which are formed at specific stages of the cell cycle and regulate the G1/S and G2/M phase transitions, employing a series of "checkpoints" governed by phosphorylation of their substrates. Tumor development is associated with the loss of these checkpoint controls, and this provides an approach for the development of therapeutic agents that can specifically target tumor cells. Here, we describe the synthesis and SAR of a novel group of cytotoxic molecules that selectively induce growth arrest of normal cells in the G1 phase while inducing a mitotic arrest of tumor cells resulting in selective killing of tumor cell populations with little or no effect on normal cell viability. The broad spectrum of antitumor activity in vitro and xenograft models, lack of in vivo toxicity, and drug resistance suggest potential for use of these agents in cancer therapy.
Asunto(s)
Antineoplásicos/síntesis química , Estirenos/síntesis química , Sulfonas/síntesis química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ratones , Ratones Desnudos , Ratas , Estereoisomerismo , Relación Estructura-Actividad , Estirenos/química , Estirenos/farmacología , Sulfonas/química , Sulfonas/farmacología , Pruebas de ToxicidadRESUMEN
A series of 20 novel 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolyl pyrazolines were designed, synthesized, and screened in vitro for anti-inflammatory activity. These compounds were designed for evaluation as dual inhibitors of cyclooxygenases (COX-1 and COX-2) and lipoxygenases (LOX-5, LOX-12, and LOX-15) that are responsible for inflammation and pain. All pyrazoline molecules prepared are optically active and compounds that are more potent in COX-2 inhibitory activity (5a and 5f) were resolved by chiral column and each enantiomer was tested for cyclooxygenase inhibitory activity. Molecular modeling and comparison of molecular models of 5a enantiomers with that of celecoxib model shows that 5a (enantiomer-1) and 5a (enantiomer-2) have more hydrogen bonding interactions in the catalytic domain of COX-2 enzyme than celecoxib. Compounds 5a, 5e, and 5f showed moderate to good LOX-5 and LOX-15 inhibitory activity and this is comparable to that of celecoxib and more potent than rofecoxib.
Asunto(s)
Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/farmacología , Indoles/química , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/farmacología , Pirazoles/síntesis química , Pirazoles/farmacología , Sitios de Unión , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/química , Diseño de Fármacos , Compuestos de Flúor/síntesis química , Compuestos de Flúor/química , Compuestos de Flúor/farmacología , Humanos , Enlace de Hidrógeno , Inhibidores de la Lipooxigenasa/química , Espectroscopía de Resonancia Magnética , Metilación , Modelos Moleculares , Estructura Molecular , Pirazoles/química , Estereoisomerismo , Relación Estructura-Actividad , Compuestos de Azufre/síntesis química , Compuestos de Azufre/química , Compuestos de Azufre/farmacologíaRESUMEN
Multiple myeloma is a fatal plasma cell neoplasm accounting for over 10,000 deaths in the United States each year. Despite new therapies, multiple myeloma remains incurable, and patients ultimately develop drug resistance and succumb to the disease. The response to selective CDK4/6 inhibitors has been modest in multiple myeloma, potentially because of incomplete targeting of other critical myeloma oncogenic kinases. As a substantial number of multiple myeloma cell lines and primary samples were found to express AMPK-related protein kinase 5(ARK5), a member of the AMPK family associated with tumor growth and invasion, we examined whether dual inhibition of CDK4 and ARK5 kinases using ON123300 results in a better therapeutic outcome. Treatment of multiple myeloma cell lines and primary samples with ON123300 in vitro resulted in rapid induction of cell-cycle arrest followed by apoptosis. ON123300-mediated ARK5 inhibition or ARK5-specific siRNAs resulted in the inhibition of the mTOR/S6K pathway and upregulation of the AMPK kinase cascade. AMPK upregulation resulted in increased SIRT1 levels and destabilization of steady-state MYC protein. Furthermore, ON123300 was very effective in inhibiting tumor growth in mouse xenograft assays. In addition, multiple myeloma cells sensitive to ON123300 were found to have a unique genomic signature that can guide the clinical development of ON123300. Our study provides preclinical evidence that ON123300 is unique in simultaneously inhibiting key oncogenic pathways in multiple myeloma and supports further development of ARK5 inhibition as a therapeutic approach in multiple myeloma.
Asunto(s)
Antineoplásicos/farmacología , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Piridonas/farmacología , Pirimidinas/farmacología , Proteínas Represoras/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/fisiología , Perfilación de la Expresión Génica , Humanos , Ratones , Mieloma Múltiple/patología , Proteínas Quinasas/fisiología , Proteínas Represoras/fisiología , Sirtuina 1/fisiología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Heat shock protein (Hsp) 90 is a key component of the super-chaperone complex that maintains functionally active conformation of various client proteins. Many of these client proteins regulate important nodal points in multiple signalling pathways that promote cancer cell growth and survival. Inhibitors of Hsp90, therefore, have the potential of functioning as anti-cancer agents with pleiotropic effects. Identification of novel Hsp90 inhibitors with more favourable pharmacological properties is a priority in cancer therapy. To achieve this goal, we screened a compound library using a biochemical assay based on refolding of denatured firefly luciferase. The assay revealed high sensitivity, reliability and reproducibility with a Z-factor of 0.81 ± 0.17. Six Hsp90 inhibitory compounds identified by this screening with IC50 values between 1.0 and 6 µM were further characterised for anti-proliferative activity by Cell Titer-Blue Cell Viability Assay using multiple tumour cell lines. Of particular interest was ONO4140 with lowest GI50 values in three different cancer cell lines viz; DU-145, BT-474 and K562 cell lines. This study also revealed that short-term exposure of tumour cells with ONO4140 is sufficient to inhibit the catalytic activity of Hsp90, evaluated through disruption of Hsp90-p23 association by immunoprecipitation. This short term exposure appears to initiate events like degradation of Hsp90 client proteins such as ErbB2/Her-2 and Akt with concomitant inhibition of survival signalling leading to the apoptotic death of tumour cells as seen by western blotting and Caspase Glow-3,7 assay. The study also reveals that apoptosis following Hsp90 inhibition with ONO4140 occurs via Caspase9-Caspase3 intrinsic apoptotic pathway, a process that is likely triggered by inactivation of Akt. In conclusion, we have identified a novel class of synthetic compounds which show potent Hsp90 inhibitory action in preclinical studies. The discovery of this novel class of synthetic Hsp90 inhibitors with simple chemical backbone allows us to conduct further structural modifications to improve their potency and pharmacokinetic properties for use in cancer therapy.
Asunto(s)
Chalconas/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Sulfonas/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Células K562 , Luciferasas de Luciérnaga/química , Luciferasas de Luciérnaga/metabolismo , Conejos , Transducción de SeñalRESUMEN
ON123300 is a low molecular weight multikinase inhibitor identified through a series of screens that supported further analyses for brain tumor chemotherapy. Biochemical assays indicated that ON123300 was a strong inhibitor of Ark5 and CDK4, as well as growth factor receptor tyrosine kinases such as ß-type platelet-derived growth factor receptor (PDGFRß). ON123300 inhibited U87 glioma cell proliferation with an IC(50) 3.4 ± 0.1 µmol/L and reduced phosphorylation of Akt, yet it also unexpectedly induced Erk activation, both in a dose- and time-dependent manner that subsequently was attributed to relieving Akt-mediated C-Raf S259 inactivation and activating a p70S6K-initiated PI3K-negative feedback loop. Cotreatment with the EGFR inhibitor gefitinib produced synergistic cytotoxic effects. Pursuant to the in vitro studies, in vivo pharmacokinetic and pharmacodynamic studies of ON123300 were completed in mice bearing intracerebral U87 tumors following intravenous doses of 5 and 25 mg/kg alone, and also at the higher dose concurrently with gefitinib. ON123300 showed high brain and brain tumor accumulation based on brain partition coefficient values of at least 2.5. Consistent with the in vitro studies, single agent ON123300 caused a dose-dependent suppression of phosphorylation of Akt as well as activation of Erk in brain tumors, whereas addition of gefitinib to the ON123300 regimen significantly enhanced p-Akt inhibition and prevented Erk activation. In summary, ON123300 demonstrated favorable pharmacokinetic characteristics, and future development for brain tumor therapy would require use of combinations, such as gefitinib, that mitigate its Erk activation and enhance its activity.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Piridonas/farmacología , Pirimidinas/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridonas/administración & dosificación , Piridonas/farmacocinética , Pirimidinas/administración & dosificación , Pirimidinas/farmacocinética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The success of imatinib, a BCR-ABL inhibitor for the treatment of chronic myelogenous leukemia, has created a great impetus for the development of additional kinase inhibitors as therapeutic agents. However, the complexity of cancer has led to recent interest in polypharmacological approaches for developing multikinase inhibitors with low toxicity profiles. With this goal in mind, we analyzed more than 150 novel cyano pyridopyrimidine compounds and identified structure-activity relationship trends that can be exploited in the design of potent kinase inhibitors. One compound, 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x), was found to be the most active, inducing apoptosis of tumor cells at a concentration of approximately 30-100 nM. In vitro kinase profiling revealed that 7x is a multikinase inhibitor with potent inhibitory activity against the CDK4/CYCLIN D1 and ARK5 kinases. Here, we report the synthesis, structure-activity relationship, kinase inhibitory profile, in vitro cytotoxicity, and in vivo tumor regression studies by this lead compound.
Asunto(s)
Antineoplásicos/síntesis química , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Piridinas/síntesis química , Pirimidinas/síntesis química , Proteínas Represoras/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Trasplante de Neoplasias , Proteínas Quinasas , Piridinas/química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Relación Estructura-ActividadRESUMEN
Development of radio-protective agents that are non-toxic is critical in light of ever increasing threats associated with proliferation of nuclear materials, terrorism and occupational risks associated with medical and space exploration. In this communication, we describe the discovery, characterization and mechanism of action of ON01210.Na, which effectively protects mouse and human bone marrow cells from radiation-induced damage both in vitro and in vivo. Our results show that treatment of normal fibroblasts with ON01210.Na before and after exposure to ionizing radiation provides dose dependent protection against radiation-induced damage. Treatment of mice with ON01210.Na prior to radiation exposure was found to result in a more rapid recovery of their hematopoietic system. The mechanistic studies described here show that ON01210.Na manifests its protective effects through the up-regulation of PI3-Kinase/AKT pathways in cells exposed to radiation. These results suggest that ON 01210.Na is a safe and effective radioprotectant and could be a novel agent for use in radiobiological disasters.