Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885842

RESUMEN

In this study, the facile synthesis of SnO2 quantum dot (QD)-garnished V2O5 nanobelts exhibiting significantly enhanced reversible capacity and outstanding cyclic stability for Li+ storage was achieved. Electrochemical impedance analysis revealed strong charge transfer kinetics related to that of V2O5 nanobelts. The SnO2 QD-garnished V2O5 nanobelts exhibited the highest discharge capacity of ca. 760 mAhg-1 at a density of 441 mAg-1 between the voltage ranges of 0.0 to 3.0 V, while the pristine V2O5 nanobelts samples recorded a discharge capacity of ca. 403 mAhg-1. The high capacity of QD-garnished nanobelts was achieved as an outcome of their huge surface area of 50.49 m2g-1 and improved electronic conductivity. Therefore, the as-presented SnO2 QD-garnished V2O5 nanobelts synthesis strategy could produce an ideal material for application in high-performance Li-ion batteries.

2.
Molecules ; 25(16)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824503

RESUMEN

In this study, Li3V2(PO4)3 (LVP) powders are prepared by a solution synthesis method. The effects of two reducing agents on crystal structure and morphology and electrochemical properties are investigated. Preliminary studies on reducing agents such as oxalic acid and citric acid, are used to reduce the vanadium (V) precursor. The oxalic acid-assisted synthesis induces smaller particles (30 nm) compared with the citric acid-assisted synthesis (70 nm). The LVP powders obtained by the oxalic acid exhibit a higher specific capacity (124 mAh g-1 at 1C) and better cycling performance (122 mAh g-1 following 50 cycles at 1C rate) than those for the citric acid. This is due to their higher electronic conductivity caused by carbon coating and downsizing the particles. The charge-discharge plateaus obtained from cyclic voltammetry are in good agreement with galvanostatic cycling profiles.


Asunto(s)
Ácido Cítrico/química , Suministros de Energía Eléctrica , Litio/química , Nanocompuestos/química , Ácido Oxálico/química , Sustancias Reductoras/química , Compuestos de Vanadio/química , Conductividad Eléctrica , Electrodos
3.
Nanomaterials (Basel) ; 10(8)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824170

RESUMEN

Energy storage materials are finding increasing applications in our daily lives, for devices such as mobile phones and electric vehicles. Current commercial batteries use flammable liquid electrolytes, which are unsafe, toxic, and environmentally unfriendly with low chemical stability. Recently, solid electrolytes have been extensively studied as alternative electrolytes to address these shortcomings. Herein, we report the early history, synthesis and characterization, mechanical properties, and Li+ ion transport mechanisms of inorganic sulfide and oxide electrolytes. Furthermore, we highlight the importance of the fabrication technology and experimental conditions, such as the effects of pressure and operating parameters, on the electrochemical performance of all-solid-state Li batteries. In particular, we emphasize promising electrolyte systems based on sulfides and argyrodites, such as LiPS5Cl and ß-Li3PS4, oxide electrolytes, bare and doped Li7La3Zr2O12 garnet, NASICON-type structures, and perovskite electrolyte materials. Moreover, we discuss the present and future challenges that all-solid-state batteries face for large-scale industrial applications.

4.
Materials (Basel) ; 13(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316390

RESUMEN

Lithium batteries are electrochemical devices that are widely used as power sources. This history of their development focuses on the original development of lithium-ion batteries. In particular, we highlight the contributions of Professor Michel Armand related to the electrodes and electrolytes for lithium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA