Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 18(6): e1010644, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727826

RESUMEN

Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.


Asunto(s)
Hepacivirus , Proteínas no Estructurales Virales , Hepacivirus/enzimología , Hepacivirus/metabolismo , Hepatitis C/virología , Humanos , Péptido Hidrolasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
2.
Proteomics ; 21(2): e2000246, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33111431

RESUMEN

The genome of coronaviruses, including SARS-CoV-2, encodes for two proteases, a papain like (PLpro ) protease and the so-called main protease (Mpro ), a chymotrypsin-like cysteine protease, also named 3CLpro or non-structural protein 5 (nsp5). Mpro is activated by autoproteolysis and is the main protease responsible for cutting the viral polyprotein into functional units. Aside from this, it is described that Mpro proteases are also capable of processing host proteins, including those involved in the host innate immune response. To identify substrates of the three main proteases from SARS-CoV, SARS-CoV-2, and hCoV-NL63 coronviruses, an LC-MS based N-terminomics in vitro analysis is performed using recombinantly expressed proteases and lung epithelial and endothelial cell lysates as substrate pools. For SARS-CoV-2 Mpro , 445 cleavage events from more than 300 proteins are identified, while 151 and 331 Mpro derived cleavage events are identified for SARS-CoV and hCoV-NL63, respectively. These data enable to better understand the cleavage site specificity of the viral proteases and will help to identify novel substrates in vivo. All data are available via ProteomeXchange with identifier PXD021406.


Asunto(s)
COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Coronavirus Humano NL63/enzimología , Fragmentos de Péptidos/análisis , SARS-CoV-2/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/metabolismo , COVID-19/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/virología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Factor 4G Eucariótico de Iniciación/metabolismo , Interacciones Huésped-Patógeno , Humanos , Pulmón/metabolismo , Pulmón/virología , Especificidad por Sustrato
3.
Biochem J ; 477(5): 1009-1019, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32083638

RESUMEN

Severe acute respiratory syndrome coronavirus is the causative agent of a respiratory disease with a high case fatality rate. During the formation of the coronaviral replication/transcription complex, essential steps include processing of the conserved polyprotein nsp7-10 region by the main protease Mpro and subsequent complex formation of the released nsp's. Here, we analyzed processing of the coronavirus nsp7-10 region using native mass spectrometry showing consumption of substrate, rise and fall of intermediate products and complexation. Importantly, there is a clear order of cleavage efficiencies, which is influenced by the polyprotein tertiary structure. Furthermore, the predominant product is an nsp7+8(2 : 2) hetero-tetramer with nsp8 scaffold. In conclusion, native MS, opposed to other methods, can expose the processing dynamics of viral polyproteins and the landscape of protein interactions in one set of experiments. Thereby, new insights into protein interactions, essential for generation of viral progeny, were provided, with relevance for development of antivirals.


Asunto(s)
Proteínas de Unión al ARN/genética , Alineación de Secuencia/métodos , Proteínas no Estructurales Virales/genética , Proteínas Reguladoras y Accesorias Virales/genética , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Transferencia Resonante de Energía de Fluorescencia , Estructura Secundaria de Proteína , Proteínas de Unión al ARN/química , Proteínas no Estructurales Virales/química , Proteínas Reguladoras y Accesorias Virales/química , Replicación Viral/fisiología
4.
Biol Chem ; 399(7): 751-772, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29894295

RESUMEN

Protein crystallization in living cells has been observed surprisingly often as a native assembly process during the past decades, and emerging evidence indicates that this phenomenon is also accessible for recombinant proteins. But only recently the advent of high-brilliance synchrotron sources, X-ray free-electron lasers, and improved serial data collection strategies has allowed the use of these micrometer-sized crystals for structural biology. Thus, in cellulo crystallization could offer exciting new possibilities for proteins that do not crystallize applying conventional approaches. In this review, we comprehensively summarize the current knowledge of intracellular protein crystallization. This includes an overview of the cellular functions, the physical properties, and, if known, the mode of regulation of native in cellulo crystal formation, complemented with a discussion of the reported crystallization events of recombinant proteins and the current method developments to successfully collect X-ray diffraction data from in cellulo crystals. Although the intracellular protein self-assembly mechanisms are still poorly understood, regulatory differences between native in cellulo crystallization linked to a specific function and accidently crystallizing proteins, either disease associated or recombinantly introduced, become evident. These insights are important to systematically exploit living cells as protein crystallization chambers in the future.


Asunto(s)
Bacterias/química , Músculo Esquelético/química , Oocitos/química , Pichia/química , Proteínas/química , Animales , Bacterias/citología , Supervivencia Celular , Cristalografía por Rayos X , Humanos , Músculo Esquelético/citología , Tamaño de la Partícula , Pichia/citología , Propiedades de Superficie
6.
PLoS Pathog ; 11(3): e1004736, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25774920

RESUMEN

Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.


Asunto(s)
Hepacivirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Western Blotting , Línea Celular , Secuencia Conservada , Electroporación , Activación Enzimática/fisiología , Genoma Viral , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Estructura Cuaternaria de Proteína , Transfección , Proteínas no Estructurales Virales/química , Replicación Viral/fisiología
7.
J Biol Chem ; 290(22): 14154-65, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25878249

RESUMEN

Elastase-like enzymes are involved in important diseases such as acute pancreatitis, chronic inflammatory lung diseases, and cancer. Structural insights into their interaction with specific inhibitors will contribute to the development of novel anti-elastase compounds that resist rapid oxidation and proteolysis. Proteinaceous Kunitz-type inhibitors homologous to the bovine pancreatic trypsin inhibitor (BPTI) provide a suitable scaffold, but the structural aspects of their interaction with elastase-like enzymes have not been elucidated. Here, we increased the selectivity of ShPI-1, a versatile serine protease inhibitor from the sea anemone Stichodactyla helianthus with high biomedical and biotechnological potential, toward elastase-like enzymes by substitution of the P1 residue (Lys(13)) with leucine. The variant (rShPI-1/K13L) exhibits a novel anti-porcine pancreatic elastase (PPE) activity together with a significantly improved inhibition of human neuthrophil elastase and chymotrypsin. The crystal structure of the PPE·rShPI-1/K13L complex determined at 2.0 Å resolution provided the first details of the canonical interaction between a BPTI-Kunitz-type domain and elastase-like enzymes. In addition to the essential impact of the variant P1 residue for complex stability, the interface is improved by increased contributions of the primary and secondary binding loop as compared with similar trypsin and chymotrypsin complexes. A comparison of the interaction network with elastase complexes of canonical inhibitors from the chelonian in family supports a key role of the P3 site in ShPI-1 in directing its selectivity against pancreatic and neutrophil elastases. Our results provide the structural basis for site-specific mutagenesis to further improve the binding affinity and/or direct the selectivity of BPTI-Kunitz-type inhibitors toward elastase-like enzymes.


Asunto(s)
Elastasa Pancreática/química , Animales , Aprotinina/química , Bovinos , Quimotripsina/química , Clonación Molecular , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Inflamación , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Serina Endopeptidasas/química , Serina Proteasas/química , Inhibidores de Serina Proteinasa/química , Porcinos , Tripsina/química
8.
Protein Expr Purif ; 123: 42-50, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26993255

RESUMEN

The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity.


Asunto(s)
Clonación Molecular , Pichia/genética , Anémonas de Mar/enzimología , Anémonas de Mar/genética , Inhibidores de Serina Proteinasa/genética , Inhibidor de la Tripsina de Soja de Kunitz/genética , Secuencia de Aminoácidos , Animales , Quimotripsina/metabolismo , Clonación Molecular/métodos , Humanos , Mutagénesis Sitio-Dirigida , Elastasa Pancreática/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Anémonas de Mar/química , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/aislamiento & purificación , Inhibidores de Serina Proteinasa/metabolismo , Tripsina/metabolismo , Inhibidor de la Tripsina de Soja de Kunitz/química , Inhibidor de la Tripsina de Soja de Kunitz/aislamiento & purificación , Inhibidor de la Tripsina de Soja de Kunitz/metabolismo
9.
J Biol Chem ; 289(49): 34389-407, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25339173

RESUMEN

Abnormal phosphorylation ("hyperphosphorylation") and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 µm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability.


Asunto(s)
Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Multimerización de Proteína/genética , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Anticuerpos Fosfo-Específicos/química , Baculoviridae/genética , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Expresión Génica , Hipocampo/citología , Hipocampo/efectos de los fármacos , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Mapeo Peptídico , Fosforilación , Cultivo Primario de Células , Agregado de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Células Sf9 , Spodoptera , Proteínas tau/genética , Proteínas tau/metabolismo , Proteínas tau/farmacología
10.
Nat Methods ; 9(3): 259-62, 2012 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-22286384

RESUMEN

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.


Asunto(s)
Cristalografía por Rayos X/métodos , Cristalografía/métodos , Proteínas/química , Proteínas/ultraestructura , Unión Proteica/efectos de la radiación , Conformación Proteica/efectos de la radiación , Proteínas/efectos de la radiación , Solubilidad/efectos de la radiación , Rayos X
11.
J Appl Crystallogr ; 57(Pt 2): 266-275, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596734

RESUMEN

In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach.

12.
Nat Commun ; 15(1): 1709, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402242

RESUMEN

With the advent of serial X-ray crystallography on microfocus beamlines at free-electron laser and synchrotron facilities, the demand for protein microcrystals has significantly risen in recent years. However, by in vitro crystallization extensive efforts are usually required to purify proteins and produce sufficiently homogeneous microcrystals. Here, we present InCellCryst, an advanced pipeline for producing homogeneous microcrystals directly within living insect cells. Our baculovirus-based cloning system enables the production of crystals from completely native proteins as well as the screening of different cellular compartments to maximize chances for protein crystallization. By optimizing cloning procedures, recombinant virus production, crystallization and crystal detection, X-ray diffraction data can be collected 24 days after the start of target gene cloning. Furthermore, improved strategies for serial synchrotron diffraction data collection directly from crystals within living cells abolish the need to purify the recombinant protein or the associated microcrystals.


Asunto(s)
Rayos Láser , Sincrotrones , Cristalografía por Rayos X , Cristalización , Proteínas Recombinantes/genética
13.
Nat Commun ; 15(1): 3827, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714735

RESUMEN

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Asunto(s)
Dominio Catalítico , Proteasas 3C de Coronavirus , Cisteína , Disulfuros , Oxidación-Reducción , SARS-CoV-2 , Disulfuros/química , Disulfuros/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Cisteína/química , Cisteína/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Multimerización de Proteína , COVID-19/virología
14.
J Struct Biol ; 180(2): 271-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22975140

RESUMEN

Proteins isolated from marine invertebrates are frequently characterized by exceptional structural and functional properties. ShPI-1, a BPTI Kunitz-type inhibitor from the Caribbean Sea anemone Stichodactyla helianthus, displays activity not only against serine-, but also against cysteine-, and aspartate proteases. As an initial step to evaluate the molecular basis of its activities, we describe the crystallographic structure of ShPI-1 in complex with the serine protease bovine pancreatic trypsin at 1.7Å resolution. The overall structure and the important enzyme-inhibitor interactions of this first invertebrate BPTI-like Kunitz-type inhibitor:trypsin complex remained largely conserved compared to mammalian BPTI-Kunitz inhibitor complexes. However, a prominent stabilizing role within the interface was attributed to arginine at position P3. Binding free-energy calculations indicated a 10-fold decrease for the inhibitor affinity against trypsin, if the P3 residue of ShPI-1 is mutated to alanine. Together with the increased role of Arg(11) at P3 position, slightly reduced interactions at the prime side (Pn') of the primary binding loop and at the secondary binding loop of ShPI-1 were detected. In addition, the structure provides important information for site directed mutagenesis to further optimize the activity of rShPI-1A for biotechnological applications.


Asunto(s)
Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Tripsina/metabolismo , Animales , Bovinos , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Anémonas de Mar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1289-93, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23143234

RESUMEN

The BPTI/Kunitz-type inhibitor family includes several extremely potent serine protease inhibitors. To date, the inhibitory mechanisms have only been studied for mammalian inhibitors. Here, the first crystal structure of a BPTI/Kunitz-type inhibitor from a marine invertebrate (rShPI-1A) is reported to 2.5 Šresolution. Crystallization of recombinant rShPI-1A required the salt-induced dissociation of a trypsin complex that was previously formed to avoid intrinsic inhibitor aggregates in solution. The rShPI-1A structure is similar to the NMR structure of the molecule purified from the natural source, but allowed the assignment of disulfide-bridge chiralities and the detection of an internal stabilizing water network. A structural comparison with other BPTI/Kunitz-type canonical inhibitors revealed unusual ϕ angles at positions 17 and 30 to be a particular characteristic of the family. A significant clustering of ϕ and ψ angle values in the glycine-rich remote fragment near the secondary binding loop was additionally identified, but its impact on the specificity of rShPI-1A and similar molecules requires further study.


Asunto(s)
Anémonas de Mar , Inhibidor de la Tripsina de Soja de Kunitz/química , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Alineación de Secuencia , Homología Estructural de Proteína
16.
Viruses ; 14(7)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35891503

RESUMEN

Nipah virus (NiV) is a zoonotic paramyxovirus with a fatality rate of up to 92% in humans. While several pathogenic mechanisms used by NiV to counteract host immune defense responses have been described, all of the processes that take place in cells during infection are not fully characterized. Here, we describe the formation of ordered intracellular structures during NiV infection. We observed that these structures are formed specifically during NiV infection, but not with other viruses from the same Mononegavirales order (namely Ebola virus) or from other orders such as Bunyavirales (Junín virus). We also determined the kinetics of the appearance of these structures and their cellular localization at the cellular periphery. Finally, we confirmed the presence of these NiV-specific ordered structures using structured illumination microscopy (SIM), as well as their localization by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and correlative light and electron microscopy (CLEM). Herein, we describe a cytopathogenic mechanism that provides a new insight into NiV biology. These newly described ordered structures could provide a target for novel antiviral approaches.


Asunto(s)
Ebolavirus , Infecciones por Henipavirus , Virus Nipah , Paramyxovirinae , Antivirales , Humanos , Virus Nipah/fisiología
17.
IUCrJ ; 8(Pt 4): 665-677, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34258014

RESUMEN

The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12 min at the Linac Coherent Light Source, a 1.8 Šresolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.

18.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 820-834, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34076595

RESUMEN

Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively unexplored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/química , Prueba de Estudio Conceptual
19.
J Appl Crystallogr ; 53(Pt 5): 1169-1180, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33117106

RESUMEN

Crystallization of recombinant proteins in living cells is an exciting new approach for structural biology that provides an alternative to the time-consuming optimization of protein purification and extensive crystal screening steps. Exploiting the potential of this approach requires a more detailed understanding of the cellular processes involved and versatile screening strategies for crystals in a cell culture. Particularly if the target protein forms crystalline structures of unknown morphology only in a small fraction of cells, their detection by applying standard visualization techniques can be time consuming and difficult owing to the environmental challenges imposed by the living cells. In this study, a high-brilliance and low-background bioSAXS beamline is employed for rapid and sensitive detection of protein microcrystals grown within insect cells. On the basis of the presence of Bragg peaks in the recorded small-angle X-ray scattering profiles, it is possible to assess within seconds whether a cell culture contains microcrystals, even in a small percentage of cells. Since such information cannot be obtained by other established detection methods in this time frame, this screening approach has the potential to overcome one of the bottlenecks of intracellular crystal detection. Moreover, the association of the Bragg peak positions in the scattering curves with the unit-cell composition of the protein crystals raises the possibility of investigating the impact of environmental conditions on the crystal structure of the intracellular protein crystals. This information provides valuable insights helping to further understand the in cellulo crystallization process.

20.
Nat Commun ; 11(1): 620, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001697

RESUMEN

Sleeping sickness is a fatal disease caused by the protozoan parasite Trypanosoma brucei (Tb). Inosine-5'-monophosphate dehydrogenase (IMPDH) has been proposed as a potential drug target, since it maintains the balance between guanylate deoxynucleotide and ribonucleotide levels that is pivotal for the parasite. Here we report the structure of TbIMPDH at room temperature utilizing free-electron laser radiation on crystals grown in living insect cells. The 2.80 Å resolution structure reveals the presence of ATP and GMP at the canonical sites of the Bateman domains, the latter in a so far unknown coordination mode. Consistent with previously reported IMPDH complexes harboring guanosine nucleotides at the second canonical site, TbIMPDH forms a compact oligomer structure, supporting a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity. The oligomeric TbIMPDH structure we present here reveals the potential of in cellulo crystallization to identify genuine allosteric co-factors from a natural reservoir of specific compounds.


Asunto(s)
Coenzimas/química , Cristalización , IMP Deshidrogenasa/química , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Guanosina Monofosfato , Modelos Moleculares , Conformación Proteica , Células Sf9 , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA