Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Physiol ; 597(4): 1073-1085, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29931797

RESUMEN

KEY POINTS: Sickle cell disease (SCD) results in cardiopulmonary dysfunction, which may be exacerbated by prolonged exposure to environmental hypoxia. It is currently unknown whether exposure to mild and moderate altitude exacerbates SCD associated cardiopulmonary and systemic complications. Three months of exposure to mild (1609 m) and moderate (2438 m) altitude increased rates of haemolysis and right ventricular systolic pressures in mice with SCD compared to healthy wild-type cohorts and SCD mice at sea level. The haemodynamic changes in SCD mice that had lived at mild and moderate altitude were accompanied by changes in the balance between pulmonary vascular endothelial nitric oxide synthase and endothelin receptor expression and impaired exercise tolerance. These data demonstrate that chronic altitude exposure exacerbates the complications associated with SCD and provides pertinent information for the clinical counselling of SCD patients. ABSTRACT: Exposure to high altitude worsens symptoms and crises in patients with sickle cell disease (SCD). However, it remains unclear whether prolonged exposure to low barometric pressures exacerbates SCD aetiologies or impairs quality of life. We tested the hypothesis that, relative to wild-type (WT) mice, Berkley sickle cell mice (BERK-SS) residing at sea level, mild (1609 m) and moderate (2438 m) altitude would have a higher rate of haemolysis, impaired cardiac function and reduced exercise tolerance, and that the level of altitude would worsen these decrements. Following 3 months of altitude exposure, right ventricular systolic pressure was measured (solid-state transducer). In addition, the adaptive balance between pulmonary vascular endothelial nitric oxide synthase and endothelin was assessed in lung tissue to determine differences in pulmonary vascular adaptation and the speed/duration relationship (critical speed) was used to evaluate treadmill exercise tolerance. At all altitudes, BERK-SS mice had a significantly lower percentage haemocrit and higher total bilirubin and free haemoglobin concentration (P < 0.05 for all). right ventricular systolic pressures in BERK-SS were higher than WT at moderate altitude and also compared to BERK-SS at sea level (P < 0.05, for both). Critical speed was significantly lower in BERK-SS at mild and moderate altitude (P < 0.05). BERK-SS demonstrated exacerbated SCD complications and reduced exercise capacity associated with an increase in altitude. These results suggest that exposure to mild and moderate altitude enhances the progression of SCD in BERK-SS mice compared to healthy WT cohorts and BERK-SS mice at sea level and provides crucial information for the clinical counselling of SCD patients.


Asunto(s)
Altitud , Anemia de Células Falciformes/fisiopatología , Endotelio Vascular/fisiopatología , Pulmón/irrigación sanguínea , Esfuerzo Físico , Aclimatación , Anemia de Células Falciformes/sangre , Animales , Presión Sanguínea , Endotelinas/metabolismo , Endotelio Vascular/metabolismo , Femenino , Hemólisis , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo
2.
Nitric Oxide ; 76: 29-36, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29526566

RESUMEN

Free hemoglobin (Hb) associated with hemolysis extravasates into vascular tissue and depletes nitric oxide (NO), which leads to impaired vascular function and could impair skeletal muscle metabolic control during exercise. We tested the hypothesis that: 1) free Hb would extravasate into skeletal muscle tissue, reducing the contracting skeletal muscle O2 delivery/O2 utilization ratio (microvascular PO2, PO2mv) to a similar extent as that observed following NO synthase (NOS) blockade, and 2) that the Hb scavenging protein haptoglobin (Hp) would prevent Hb extravasation and inhibit these skeletal muscle tissue effects. PO2mv was measured in eight rats (phosphorescence quenching) at rest and during 180 s of electrically induced (1-Hz) twitch spinotrapezius muscle contractions (experiment 1). A second group of seven rats was also used to investigate the effects of Hb + Hp (experiment 2). For both experiments, measurements were made: 1) during control conditions, 2) following a bolus infusion of either Hb (50 mg/kg) or Hb + Hp (50 mg/kg), and 3) following local superfusion of NG-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg). Additional experiments were completed to visualize Hb extravasation into the muscular tissue using Click chemistry techniques. There were no significant differences in the PO2mv observed at rest for any condition in either experiment (p > 0.05 for all). In experiment 1, both Hb and L-NAME reduced the PO2mv significantly during the steady-state of muscle contractions when compared to control conditions with no differences between Hb and L-NAME (control: 24 ±â€¯1, Hb: 21 ±â€¯1, L-NAME: 20 ±â€¯1 mmHg, p < 0.05). In experiment 2, only L-NAME resulted in a significantly lower PO2mv during the steady-state of muscle contractions (control: 25 ± 1, Hb + Hp: 22 ± 2, L-NAME: 18 ± 1 mmHg, p < 0.05). Free Hb lowered the blood-myocyte O2 driving force to a level not significantly different from L-NAME. However, infusing Hb bound to Hp resulted in no significant differences in steady-state PO2mv during muscle contractions when compared to control. Surprisingly, we did not observe Hb accumulation in skeletal muscle tissue. Taken together these data suggests that free Hb impairs O2 delivery/utilization via a NO scavenging effect. Furthermore, the unchanged PO2mv steady-state observed following Hb + Hp further indicates that vascular compartmentalization of Hb by the scavenger protein haptoglobin may improve skeletal muscle metabolic control and potentially exercise tolerance in those afflicted with hemolytic diseases.


Asunto(s)
Hemoglobinas/metabolismo , Microvasos/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley
3.
J Appl Physiol (1985) ; 129(3): 474-482, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32702277

RESUMEN

Sickle cell disease (SCD) causes exercise intolerance likely due to impaired skeletal muscle function and low nitric oxide (NO) bioavailability. Dietary nitrate improves hemodynamic and metabolic control during exercise in humans and animals. The purpose of this investigation was to assess the impact of nitrate supplementation on exercise capacity as measured by the running speed to exercise duration relationship [critical speed (CS)]in mice with SCD. We tested the hypothesis that nitrate supplementation via beetroot juice (BR) would attenuate the exercise intolerance observed in mice with SCD. Ten wild-type (WT) and 18 Berkley sickle-cell mice (BERK) received water (WT: n = 10, BERK: n = 10) or nitrate-rich BR (BERK+BR: n = 8, nitrate dose 1 mmol/kg/day) for 5 days. Following the supplementation period, all mice performed 3-5 constant-speed treadmill tests that resulted in exhaustion within 1.5 to 20 min. Time to exhaustion vs. treadmill speed was fit to a hyperbolic model to determine CS. CS was significantly lower in BERK vs. WT and BERK+BR with no significant difference between WT and BERK+BR (WT: 36.6 ± 1.6, BERK: 23.8 ± 1.5, BERK+BR: 31.1 ± 2.1 m/min, P < 0.05). Exercise tolerance, measured via CS, was significantly lower in BERK mice relative to WT. However, BERK mice receiving 5 days of nitrate supplementation exhibited no difference in exercise tolerance when compared with WT. These results support the potential utility of a dietary nitrate intervention to improve functionality in SCD patients.NEW & NOTEWORTHY Sickle cell disease compromises muscle O2 delivery resulting in exercise intolerance. Dietary nitrate supplementation increases skeletal muscle blood flow during exercise and may improve exercise capacity in a mouse model of sickle cell disease. We investigated the effects of dietary nitrate supplementation on exercise tolerance in a mouse model of sickle cell disease using the treadmill speed-duration relationship (critical speed). Mice with sickle cell disease provided with a dietary nitrate supplement had a critical speed not significantly different from healthy wild-type mice.


Asunto(s)
Anemia de Células Falciformes , Beta vulgaris , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Suplementos Dietéticos , Método Doble Ciego , Tolerancia al Ejercicio , Humanos , Ratones , Nitratos , Consumo de Oxígeno
4.
Drug Deliv ; 26(1): 147-157, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30822171

RESUMEN

Hypoxic pulmonary vasoconstriction (HPV) is a well-characterized vascular response to low oxygen pressures and is involved in life-threatening conditions such as high-altitude pulmonary edema (HAPE) and pulmonary arterial hypertension (PAH). While the efficacy of oral therapies can be affected by drug metabolism, or dose-limiting systemic toxicity, inhaled treatment via pressured metered dose inhalers (pMDI) may be an effective, nontoxic, practical alternative. We hypothesized that a stable water-in-perfluorooctyl bromide (PFOB) emulsion that provides solubility in common pMDI propellants, engineered for intrapulmonary delivery of pulmonary vasodilators, reverses HPV during acute hypoxia (HX). Male Sprague Dawley rats received two 10-min bouts of HX (13% O2) with 20 min of room air and drug application between exposures. Treatment groups: intrapulmonary delivery (PUL) of (1) saline; (2) ambrisentan in saline (0.1 mg/kg); (3) empty emulsion; (4) emulsion encapsulating ambrisentan or sodium nitrite (NaNO2) (0.1 and 0.5 mg/kg each); and intravenous (5) ambrisentan (0.1 mg/kg) or (6) NaNO2 (0.5 mg/kg). Neither PUL of saline or empty emulsion, nor infusions of drugs prevented pulmonary artery pressure (PAP) elevation (32.6 ± 3.2, 31.5 ± 1.2, 29.3 ± 1.8, and 30.2 ± 2.5 mmHg, respectively). In contrast, PUL of aqueous ambrisentan and both drug emulsions reduced PAP by 20-30% during HX, compared to controls. IL6 expression in bronchoalveolar lavage fluid and whole lung 24 h post-PUL did not differ among cohorts. We demonstrate proof-of-concept for delivering pulmonary vasodilators via aerosolized water-in-PFOB emulsion. This concept opens a potentially feasible and effective route of treating pulmonary vascular pathologies via pMDI.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Emulsiones/administración & dosificación , Fluorocarburos/administración & dosificación , Hipertensión Pulmonar/tratamiento farmacológico , Edema Pulmonar/tratamiento farmacológico , Agua/administración & dosificación , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Emulsiones/metabolismo , Fluorocarburos/metabolismo , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/metabolismo , Masculino , Fenilpropionatos/administración & dosificación , Fenilpropionatos/metabolismo , Circulación Pulmonar/efectos de los fármacos , Circulación Pulmonar/fisiología , Edema Pulmonar/diagnóstico por imagen , Edema Pulmonar/metabolismo , Piridazinas/administración & dosificación , Piridazinas/metabolismo , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Agua/metabolismo
5.
PLoS One ; 12(2): e0171219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28152051

RESUMEN

It is now well established that both inherited and acquired forms of hemolytic disease can promote pulmonary vascular disease consequent of free hemoglobin (Hb) induced NO scavenging, elevations in reactive oxygen species and lipid peroxidation. It has recently been reported that oxidative stress can activate NFkB through a toll-like receptor 9 (TLR9) mediated pathway; further, TLR9 can be activated by either nuclear or mitochondrial DNA liberated by stress induced cellular trauma. We hypothesis that Hb induced lipid peroxidation and subsequent endothelial cell trauma is linked to TLR9 activation, resulting in IL-6 mediated pulmonary smooth muscle cell proliferation. We examined the effects of Hb on rat pulmonary artery endothelial and smooth muscle cells (rPAEC and rPASMC, respectively), and then utilized TLR9 and IL6 inhibitors, as well as the Hb and heme binding proteins (haptoglobin (Hp) and hemopexin (Hpx), respectively) to further elucidate the aforementioned mediators. Further, we explored the effects of Hb in vivo utilizing endothelial cell (EC) specific myeloid differentiation primary response gene-88 (MyD88) and TLR9 null mice. Our data show that oxidized Hb induces lipid peroxidation, cellular toxicity (5.5 ± 1.7 fold; p≤0.04), increased TLR9 activation (60%; p = 0.01), and up regulated IL6 expression (1.75±0.3 fold; p = 0.04) in rPAEC. Rat PASMC exhibited a more proliferative state (13 ± 1%; p = 0.01) when co-cultured with Hb activated rPAEC. These effects were attenuated with the sequestration of Hb or heme by Hp and Hpx as well as with TLR9 an IL-6 inhibition. Moreover, in both EC-MyD88 and TLR9 null mice Hb-infusion resulted in less lung IL-6 expression compared to WT cohorts. These results demonstrate that Hb-induced lipid peroxidation can initiate a modest TLR9 mediated inflammatory response, subsequently generating an activated SMC phenotype.


Asunto(s)
Hemoglobinas/metabolismo , Arteria Pulmonar/fisiología , Receptor Toll-Like 9/fisiología , Anemia Hemolítica/etiología , Animales , Proliferación Celular , Femenino , Hipertensión Pulmonar/etiología , Interleucina-6/fisiología , Peroxidación de Lípido , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA