Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(18): 11289-11298, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418047

RESUMEN

Collisional quenching of NO A2Σ+ (v = 0, 1) by O2 has been studied through the detection of vibrationally excited products by time-resolved Fourier transform infrared emission spectroscopy. Non-reactive quenching of NO A2Σ+ (v = 0) produces a vibrational distribution in NO X2Π which has been quantified for v = 2-22, and is found to be bimodal. The results are consistent with two quenching channels. The first forms the ground X3Σ or low-lying a 1Δg electronic state of O2 with a distribution including high vibrational levels of NO X2Π which is slightly hotter than statistical. Two possibilities are identified for the second channel. The first, with a similar quantum yield to that producing higher vibrational levels, forms a highly electronically excited state, such as O2 c1Σ, with low vibrational levels in NO X2Π which are inverted with a distribution resembling that resulting from a sudden or harpoon mechanism. The second is that ground state oxygen is formed with low vibrational energy partitioned into NO X2Π. In addition, vibrationally excited NO2 is observed, but at intensities which indicate that it is formed in low quantum yield. Quantitatively unobservable processes (defined as those which do not form ground state NO (v ≥ 2)) are found to have a branching ratio of at most 25 ± 5%. The results are compared with those of previous studies and the most consistent interpretation suggests that dissociation of O2 to form ground state O(3P) atoms and ground vibrational state NO X2Π (v = 0) is the main reactive process rather than NO2 formation. Qualitatively similar results are seen for the quenching of NO A2Σ+ (v = 1).

2.
J Appl Physiol (1985) ; 135(1): 205-216, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262105

RESUMEN

This study explored the use of computed cardiopulmonography (CCP) to assess lung function in early-stage cystic fibrosis (CF). CCP has two components. The first is a particularly accurate technique for measuring gas exchange. The second is a computational cardiopulmonary model where patient-specific parameters can be estimated from the measurements of gas exchange. Twenty-five participants (14 healthy controls, 11 early-stage CF) were studied with CCP. They were also studied with a standard clinical protocol to measure the lung clearance index (LCI2.5). Ventilation inhomogeneity, as quantified through CCP parameter σlnCl, was significantly greater (P < 0.005) in CF than in controls, and anatomical deadspace relative to predicted functional residual capacity (DS/FRCpred) was significantly more variable (P < 0.002). Participant-specific parameters were used with the CCP model to calculate idealized values for LCI2.5 (iLCI2.5) where extrapulmonary influences on the LCI2.5, such as breathing pattern, had all been standardized. Both LCI2.5 and iLCI2.5 distinguished clearly between CF and control participants. LCI2.5 values were mostly higher than iLCI2.5 values in a manner dependent on the participant's respiratory rate (r = 0.46, P < 0.05). The within-participant reproducibility for iLCI2.5 appeared better than for LCI2.5, but this did not reach statistical significance (F ratio = 2.2, P = 0.056). Both a sensitivity analysis on iLCI2.5 and a regression analysis on LCI2.5 revealed that these depended primarily on an interactive term between CCP parameters of the form σlnCL*(DS/FRC). In conclusion, the LCI2.5 (or iLCI2.5) probably reflects an amalgam of different underlying lung changes in early-stage CF that would require a multiparameter approach, such as potentially CCP, to resolve.NEW & NOTEWORTHY Computed cardiopulmonography is a new technique comprising a highly accurate sensor for measuring respiratory gas exchange coupled with a cardiopulmonary model that is used to identify a set of patient-specific characteristics of the lung. Here, we show that this technique can improve on a standard clinical approach for lung function testing in cystic fibrosis. Most particularly, an approach incorporating multiple model parameters can potentially separate different aspects of pathological change in this disease.


Asunto(s)
Fibrosis Quística , Humanos , Reproducibilidad de los Resultados , Pruebas de Función Respiratoria/métodos , Pulmón , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA