Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mikrochim Acta ; 187(3): 180, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076878

RESUMEN

A rapid fluorometric method is described for the determination of lactate and cholesterol by using ZnO nanowires (ZnO NWs). The assay is based on the detection of the hydrogen peroxide generated during the enzymatic reactions of the oxidation of lactate or cholesterol. Taking advantage of the electrostatic interactions between the enzymes and the ZnO NWs, two bioconjugates were prepared by mixing the nanomaterial and the enzymes, viz. lactate oxidase (LOx) or cholesterol oxidase (ChOx). The enzymatically generated hydrogen peroxide quenches the fluorescence of the ZnO NWs, which have emission peaks at 384 nm and at 520 nm under 330 nm photoexcitation. H2O2 quenches the 520 nm band more strongly. Response is linear up to 1.9 µM lactate concentration, and up to 1.1 µM cholesterol concentration. Relative standard deviation was found to be 5%. The detection limits for lactate and cholesterol are 0.54 and 0.24 µM, respectively. Graphical abstractSchematic representation of fluorescence assay based on ZnO nanowires photoluminiscence for lactate and colesterol detection.


Asunto(s)
Colesterol/química , Fluorometría/métodos , Ácido Láctico/química , Óxido de Zinc/metabolismo
2.
Nano Lett ; 19(8): 5790-5795, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31345033

RESUMEN

The physics of collective optical response of molecular assemblies, pioneered by Dicke in 1954, has long been at the center of theoretical and experimental scrutiny. The influence of the environment on such phenomena is also of great interest due to various important applications in, e.g., energy conversion devices. In this Letter, we demonstrate both experimentally and theoretically the spatial modulations of the collective decay rates of molecules placed in proximity to a metal interface. We show in a very simple framework how the cooperative optical response can be analyzed in terms of intermolecular correlations causing interference between the response of different molecules and the polarization induced on a nearby metallic boundary and predict similar collective interference phenomena in excitation energy transfer between molecular aggregates.

3.
Microsc Microanal ; 21(4): 994-1005, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26123063

RESUMEN

We present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale.

4.
ACS Appl Mater Interfaces ; 13(47): 56655-56662, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787387

RESUMEN

In this work, we performed systematic studies on the oxidation of zinc nitride metastable layers using a climate chamber with controlled temperature and relative humidity. The electrical properties of the samples were in situ analyzed using a programmable microprocessor with a voltage divider, while the structural and optical properties were ex situ measured by scanning electron microscopy, elastic recoil detection analysis, and spectroscopic ellipsometry. Our results show that zinc nitride transformation proceeds in a top-down way, with a progressive substitution of N by O, which leads to the formation of pores and a remarkable swelling effect. The overall behavior is well explained by a universal logistic growth model. Considering this model, we successfully fabricated and tested a zinc nitride-based dehydration sensor for biomedical applications.

5.
Sci Rep ; 10(1): 16039, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994454

RESUMEN

In this work we report on the characterization and biological functionalization of 2D MoS2 flakes, epitaxially grown on sapphire, to develop an optical biosensor for the breast cancer biomarker miRNA21. The MoS2 flakes were modified with a thiolated DNA probe complementary to the target biomarker. Based on the photoluminescence of MoS2, the hybridization events were analyzed for the target (miRNA21c) and the control non-complementary sequence (miRNA21nc). A specific redshift was observed for the hybridization with miRNA21c, but not for the control, demonstrating the biomarker recognition via PL. The homogeneity of these MoS2 platforms was verified with microscopic maps. The detailed spectroscopic analysis of the spectra reveals changes in the trion to excitation ratio, being the redshift after the hybridization ascribed to both peaks. The results demonstrate the benefits of optical biosensors based on MoS2 monolayer for future commercial devices.


Asunto(s)
Neoplasias de la Mama/diagnóstico , MicroARNs/genética , Hibridación de Ácido Nucleico/métodos , Biomarcadores de Tumor/genética , Técnicas Biosensibles/métodos , Mama/química , Neoplasias de la Mama/genética , ADN/análisis , Disulfuros/química , Femenino , Humanos , Luminiscencia , Molibdeno/química
6.
Nanoscale Adv ; 1(2): 884-893, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36132234

RESUMEN

2D monolayer molybdenum disulphide (MoS2) has been the focus of intense research due to its direct bandgap compared with the indirect bandgap of its bulk counterpart; however its photoluminescence (PL) intensity is limited due to its low absorption efficiency. Herein, we use gallium hemispherical nanoparticles (Ga NPs) deposited by thermal evaporation on top of chemical vapour deposited MoS2 monolayers in order to enhance its luminescence. The influence of the NP radius and the laser wavelength is reported in PL and Raman experiments. In addition, the physics behind the PL enhancement factor is investigated. The results indicate that the prominent enhancement is caused by the localized surface plasmon resonance of the Ga NPs induced by a charge transfer phenomenon. This work sheds light on the use of alternative metals, besides silver and gold, for the improvement of MoS2 luminescence.

7.
Sci Rep ; 6: 28459, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27350322

RESUMEN

The built-in piezoelectric fields in group III-nitrides can act as road blocks on the way to maximizing the efficiency of opto-electronic devices. In order to overcome this limitation, a proper characterization of these fields is necessary. In this work nano-beam electron diffraction in scanning transmission electron microscopy mode has been used to simultaneously measure the strain state and the induced piezoelectric fields in a GaN/AlN multiple quantum well system.

8.
Sci Rep ; 5: 9703, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25853988

RESUMEN

We studied the optical properties of metalorganic chemical vapour deposited (MOCVD) InGaN/GaN multiple quantum wells (MQW) subjected to nitrogen (N) implantation and post-growth annealing treatments. The optical characterization was carried out by means of temperature and excitation density-dependent steady state photoluminescence (PL) spectroscopy, supplemented by room temperature PL excitation (PLE) and PL lifetime (PLL) measurements. The as-grown and as-implanted samples were found to exhibit a single green emission band attributed to localized excitons in the QW, although the N implantation leads to a strong reduction of the PL intensity. The green band was found to be surprisingly stable on annealing up to 1400°C. A broad blue band dominates the low temperature PL after thermal annealing in both samples. This band is more intense for the implanted sample, suggesting that defects generated by N implantation, likely related to the diffusion/segregation of indium (In), have been optically activated by the thermal treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA