Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am Nat ; 201(6): 779-793, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229706

RESUMEN

AbstractCrow's "opportunity for selection" (I=variance in relative fitness) is an important albeit controversial eco-evolutionary concept, particularly regarding the most appropriate null model(s). Here, we treat this topic in a comprehensive way by considering opportunities for both fertility selection (If) and viability selection (Im) for discrete generations, both seasonal and lifetime reproductive success in age-structured species, and experimental designs that include either a full or partial life cycle, with complete enumeration or random subsampling. For each scenario, a null model that includes random demographic stochasticity can be constructed that follows Crow's initial formulation that I=If+Im. The two components of I are qualitatively different. Whereas an adjusted If (ΔIf) can be computed that accounts for random demographic stochasticity in offspring number, Im cannot be similarly adjusted in the absence of data on phenotypic traits under viability selection. Including as potential parents some individuals that die before reproductive age produces an overall zero-inflated Poisson null model. It is always important to remember that (1) Crow's I represents only the opportunity for selection and not selection itself and (2) the species' biology can lead to random stochasticity in offspring number that is either overdispersed or underdispersed compared with the Poisson (Wright-Fisher) expectation.


Asunto(s)
Reproducción , Selección Genética , Humanos , Fertilidad , Evolución Biológica , Fenotipo
2.
J Anim Ecol ; 92(1): 7-15, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36366942

RESUMEN

Natural selection can only occur if individuals differ in fitness. For this reason, the variance in relative fitness has been equated with the 'opportunity for selection' ( I ), which has a long, albeit somewhat controversial, history. In this paper we discuss the use/misuse of I and related metrics in evolutionary ecology. The opportunity is only realised if some fraction of I is caused by trait variation. Thus, I > 0 does not imply that selection is occurring, as sometimes erroneously assumed, because all fitness variation could be independent of phenotype. The selection intensity on any given trait cannot exceed I , but this upper limit will never be reached because (a) stochastic factors always affect fitness, and (b) there might be multiple traits under selection. The expected magnitude of the stochastic component of I is negatively correlated with mean fitness. Uncertainty in realised I is also larger when mean fitness or population/sample size are low. Variation in I across time or space thus can be dominated (or solely driven) by variation in the strength of demographic stochasticity. We illustrate these points using simulations and empirical data from a population study on great tits Parus major. Our analysis shows that the scope for fecundity selection in the great tits is substantially higher when using annual number of recruits as the fitness measure, rather than fledglings or eggs, even after adjusting for the dependence of I on mean fitness. This suggests nonrandom survival of juveniles across families between life stages. Indeed, previous work on this population has shown that offspring recruitment is often nonrandom with respect to clutch size and laying date of parents, for example. We conclude that one cannot make direct inferences about selection based on fitness data alone. However, examining variation in ∆ I F (the opportunity for fecundity selection adjusted for mean fitness) across life stages, years or environments can offer clues as to when/where fecundity selection might be strongest, which can be useful for research planning and experimental design.


Asunto(s)
Passeriformes , Reproducción , Animales , Ecología , Fertilidad , Selección Genética
3.
J Fish Biol ; 102(6): 1327-1339, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36911993

RESUMEN

Genetic identity analysis and PIT (passive integrated transponder) tagging were used to examine the freshwater return rates and phenotypic characteristics of n = 1791 downstream migrating juvenile Salmo trutta in the Burrishoole catchment (northwest Ireland) across the period September 2017 to December 2020. In this system, juveniles out-migrate (move from freshwater into brackish or marine habitats) in every month of the year, with distinct seasonal peaks in spring (March through June; mostly silvered smolts) and autumn (September through December; mostly younger, unsilvered fry or parr). Both types exhibited a sex-bias towards females, which was stronger in spring (78% females) than in autumn outmigrants (67%). Sixty-nine returning fish were matched back to previous juvenile outmigrants, and similar return rates were found for spring outmigrants (5.0%), autumn outmigrants (3.3%) and fish that out-migrated outside of spring or autumn (2.8%). Spring and autumn outmigrants returned at similar dates (typically mid to late July), but autumn fish were away for longer periods (median = 612 days; spring outmigrants = 104 days). Autumn outmigrants were 25% smaller than spring outmigrants at outmigration and 6% smaller on their return, and within both groups smaller/younger outmigrants spent longer away than larger/older outmigrants. Autumn outmigrants were more likely to return unsilvered as "slob" trout (84%) than spring outmigrants (31%), suggesting they make greater use of brackish habitats that might be safer, but less productive, than fully marine habitats. Nonetheless, both types also produced silvered "sea trout" (≥1+ sea-age), implying neither is locked into a single life-history strategy. The findings emphasise that autumn outmigrants and the transitional habitats that support their persistence should not be overlooked in salmonid management and conservation.


Asunto(s)
Migración Animal , Agua Dulce , Femenino , Animales , Masculino , Estaciones del Año , Trucha , Demografía
4.
Ecol Lett ; 24(7): 1505-1521, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33931936

RESUMEN

Interactions between natural selection and population dynamics are central to both evolutionary-ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth-underappreciated outcomes that have major implications in a rapidly changing world.


Asunto(s)
Evolución Biológica , Selección Genética , Humanos , Endogamia , Fenotipo , Dinámica Poblacional
5.
Proc Biol Sci ; 288(1958): 20211509, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34521251

RESUMEN

Metabolism defines the energetic cost of life, yet we still know relatively little about why intraspecific variation in metabolic rate arises and persists. Spatio-temporal variation in selection potentially maintains differences, but relationships between metabolic traits (standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic scope) and fitness across contexts are unresolved. We show that associations between SMR, MMR, and growth rate (a key fitness-related trait) vary depending on the thermal regime (a potential selective agent) in offspring of wild-sampled brown trout from two populations reared for approximately 15 months in either a cool or warm (+1.8°C) regime. SMR was positively related to growth in the cool, but negatively related in the warm regime. The opposite patterns were found for MMR and growth associations (positive in warm, negative in the cool regime). Mean SMR, but not MMR, was lower in warm regimes within both populations (i.e. basal metabolic costs were reduced at higher temperatures), consistent with an adaptive acclimation response that optimizes growth. Metabolic phenotypes thus exhibited a thermally sensitive metabolic 'floor' and a less flexible metabolic 'ceiling'. Our findings suggest a role for growth-related fluctuating selection in shaping patterns of metabolic variation that is likely important in adapting to climate change.


Asunto(s)
Metabolismo Basal , Trucha , Aclimatación , Animales , Metabolismo Energético , Fenotipo
6.
Glob Chang Biol ; 26(5): 2878-2896, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32103581

RESUMEN

With rapid global change, organisms in natural systems are exposed to a multitude of stressors that likely co-occur, with uncertain impacts. We explored individual and cumulative effects of co-occurring environmental stressors on the striking, yet poorly understood, phenomenon of facultative migration. We reared offspring of a brown trout population that naturally demonstrates facultative anadromy (sea migration), under different environmental stressor treatments and measured life history responses in terms of migratory tactics and freshwater maturation rates. Juvenile fish were exposed to reduced food availability, temperatures elevated to 1.8°C above natural conditions or both treatments in combination over 18 months of experimental tank rearing. When considered in isolation, reduced food had negative effects on the size, mass and condition of fish across the experiment. We detected variable effects of warm temperatures (negative effects on size and mass, but positive effect on lipids). When combined with food restriction, temperature effects on these traits were less pronounced, implying antagonistic stressor effects on morphological traits. Stressors combined additively, but had opposing effects on life history tactics: migration increased and maturation rates decreased under low food conditions, whereas the opposite occurred in the warm temperature treatment. Not all fish had expressed maturation or migration tactics by the end of the study, and the frequency of these 'unassigned' fish was higher in food deprivation treatments, but lower in warm treatments. Fish showing migration tactics were smaller and in poorer condition than fish showing maturation tactics, but were similar in size to unassigned fish. We further detected effects of food restriction on hypo-osmoregulatory function of migrants that may influence the fitness benefits of the migratory tactic at sea. We also highlight that responses to multiple stressors may vary depending on the response considered. Collectively, our results indicate contrasting effects of environmental stressors on life history trajectories in a facultatively migratory species.


Asunto(s)
Migración Animal , Trucha , Animales , Agua Dulce , Temperatura
7.
J Fish Biol ; 95(3): 692-718, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31197849

RESUMEN

Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream-upstream within a river system, fluvial-adfluvial potamodromous; to and from a lake, lacustrine-adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial-adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine-adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr-smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration-residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.


Asunto(s)
Migración Animal , Trucha/fisiología , Animales , Ecosistema , Metabolismo Energético , Femenino , Internado y Residencia , Lagos , Masculino , Sitios de Carácter Cuantitativo , Reproducción , Ríos , Conducta Sexual Animal , Trucha/genética
8.
Am Nat ; 191(5): E144-E158, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29693435

RESUMEN

Despite ample evidence for the presence of maternal effects (MEs) in a variety of traits and strong theoretical indications for their evolutionary consequences, empirical evidence to what extent MEs can influence evolutionary responses to selection remains ambiguous. We tested the degree to which MEs can alter the rate of adaptation of a key life-history trait, clutch size, using an individual-based model approach parameterized with experimental data from a long-term study of great tits (Parus major). We modeled two types of MEs: (i) an environmentally plastic ME, in which the relationship between maternal and offspring clutch size depended on the maternal environment via offspring condition, and (ii) a fixed ME, in which this relationship was constant. Although both types of ME affected the rate of adaptation following an abrupt environmental shift, the overall effects were small. We conclude that evolutionary consequences of MEs are modest at best in our study system, at least for the trait and the particular type of ME we considered here. A closer link between theoretical and empirical work on MEs would hence be useful to obtain accurate predictions about the evolutionary consequences of MEs more generally.


Asunto(s)
Adaptación Biológica , Tamaño de la Nidada , Rasgos de la Historia de Vida , Herencia Materna , Pájaros Cantores/genética , Animales , Ambiente , Femenino , Masculino
9.
Malar J ; 17(1): 291, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097031

RESUMEN

BACKGROUND: Portfolio effects were first described as a basis for mitigating against financial risk by diversifying investments. Distributing investment across several different assets can stabilize returns and reduce risks by statistical averaging of individual asset dynamics that often correlate weakly or negatively with each other. The same simple probability theory is equally applicable to complex ecosystems, in which biological and environmental diversity stabilizes ecosystems against natural and human-mediated perturbations. Given the fundamental limitations to how well the full complexity of ecosystem dynamics can be understood or anticipated, the portfolio effect concept provides a simple framework for more critical data interpretation and pro-active conservation management. Applied to conservation ecology purposes, the portfolio effect concept informs management strategies emphasizing identification and maintenance of key ecological processes that generate complexity, diversity and resilience against inevitable, often unpredictable perturbations. IMPLICATIONS: Applied to the reciprocal goal of eliminating the least valued elements of global biodiversity, specifically lethal malaria parasites and their vector mosquitoes, simply understanding the portfolio effect concept informs more cautious interpretation of surveillance data and simulation model predictions. Malaria transmission mediated by guilds of multiple vectors in complex landscapes, with highly variable climatic and meteorological conditions, as well as changing patterns of land use and other human behaviours, will systematically tend to be more resilient to attack with vector control than it appears based on even the highest quality surveillance data or predictive models. CONCLUSION: Malaria vector control programmes may need to be more ambitious, interpret their short-to-medium term assessments of intervention impact more cautiously, and manage stakeholder expectations more conservatively than has often been the case thus far.


Asunto(s)
Anopheles/fisiología , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Animales , Anopheles/parasitología , Malaria/psicología , Mosquitos Vectores/parasitología
10.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25165771

RESUMEN

The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Selección Genética , Animales , Larva/crecimiento & desarrollo , Larva/fisiología , Lepidópteros/crecimiento & desarrollo , Lepidópteros/fisiología , Modelos Biológicos , Estaciones del Año , Pájaros Cantores/genética , Pájaros Cantores/fisiología
11.
J Anim Ecol ; 82(1): 131-44, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22862682

RESUMEN

Populations are shifting their phenology in response to climate change, but these shifts are often asynchronous among interacting species. Resulting phenological mismatches can drive simultaneous changes in natural selection and population demography, but the links between these interacting processes are poorly understood. Here we analyse 37 years of data from an individual-based study of great tits (Parus major) in the Netherlands and use mixed-effects models to separate the within- and across-year effects of phenological mismatch between great tits and caterpillars (a key food source for developing nestlings) on components of fitness at the individual and population levels. Several components of individual fitness were affected by individual mismatch (i.e. late breeding relative to the caterpillar food peak date), including the probability of double-brooding, fledgling success, offspring recruitment probability and the number of recruits. Together these effects contributed to an overall negative relationship between relative fitness and laying dates, that is, selection for earlier laying on average. Directional selection for earlier laying was stronger in years where birds bred on average later than the food peak, but was weak or absent in years where the phenology of birds and caterpillars matched (i.e. no population mismatch). The mean number of fledglings per female was lower in years when population mismatch was high, in part because fewer second broods were produced. Population mismatch had a weak effect on the mean number of recruits per female, and no effect on mean adult survival, after controlling for the effects of breeding density and the quality of the autumnal beech (Fagus sylvatica) crop. These findings illustrate how climate change-induced mismatch can have strong effects on the relative fitness of phenotypes within years, but weak effects on mean demographic rates across years. We discuss various general mechanisms that influence the extent of coupling between breeding phenology, selection and population dynamics in open populations subject to strong density regulation and stochasticity.


Asunto(s)
Ecosistema , Passeriformes/genética , Passeriformes/fisiología , Árboles , Animales , Cambio Climático , Femenino , Longevidad , Masculino , Países Bajos , Dinámica Poblacional , Reproducción , Selección Genética
12.
Proc Biol Sci ; 279(1741): 3161-9, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22628472

RESUMEN

Adaptation in dynamic environments depends on the grain, magnitude and predictability of ecological fluctuations experienced within and across generations. Phenotypic plasticity is a well-studied mechanism in this regard, yet the potentially complex effects of stochastic environmental variation on optimal mean trait values are often overlooked. Using an optimality model inspired by timing of reproduction in great tits, we show that temporal variation affects not only optimal reaction norm slope, but also elevation. With increased environmental variation and an asymmetric relationship between fitness and breeding date, optimal timing shifts away from the side of the fitness curve with the steepest decline. In a relatively constant environment, the timing of the birds is matched with the seasonal food peak, but they become adaptively mismatched in environments with temporal variation in temperature whenever the fitness curve is asymmetric. Various processes affecting the survival of offspring and parents influence this asymmetry, which collectively determine the 'safest' strategy, i.e. whether females should breed before, on, or after the food peak in a variable environment. As climate change might affect the (co)variance of environmental variables as well as their averages, risk aversion may influence how species should shift their seasonal timing in a warming world.


Asunto(s)
Adaptación Fisiológica/fisiología , Cambio Climático , Passeriformes/fisiología , Reproducción/fisiología , Animales , Conducta Alimentaria , Femenino , Lepidópteros/fisiología , Modelos Biológicos , Passeriformes/clasificación , Estaciones del Año , Procesos Estocásticos , Factores de Tiempo
13.
Evol Lett ; 6(2): 178-188, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386830

RESUMEN

The mismatch between when individuals breed and when we think they should breed has been a long-standing problem in evolutionary ecology. Price et al. is a classic theory paper in this field and is mainly cited for its most obvious result: if individuals with high nutritional condition breed early, then the advantage of breeding early may be overestimated when information on nutritional condition is absent. Price at al.'s less obvious result is that individuals, on average, are expected to breed later than the optimum. Here, we provide an explanation of their non-intuitive result in terms of hard selection, and go on to show that neither of their results are expected to hold if the relationship between breeding date and nutrition is allowed to evolve. By introducing the assumption that the advantage of breeding early is greater for individuals in high nutritional condition, we show that their most cited result can be salvaged. However, individuals, on average, are expected to breed earlier than the optimum, not later. More generally, we also show that the hard selection mechanisms that underpin these results have major implications for the evolution of plasticity: when environmental heterogeneity becomes too great, plasticity is selected against, prohibiting the evolution of generalists.

14.
Conserv Biol ; 25(1): 56-63, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20646016

RESUMEN

Climate change affects individual organisms by altering development, physiology, behavior, and fitness, and populations by altering genetic and phenotypic composition, vital rates, and dynamics. We sought to clarify how selection, phenotypic plasticity, and demography are linked in the context of climate change. On the basis of theory and results of recent empirical studies of plants and animals, we believe the ecological and evolutionary issues relevant to population persistence as climate changes are the rate, type, magnitude, and spatial pattern of climate-induced abiotic and biotic change; generation time and life history of the organism; extent and type of phenotypic plasticity; amount and distribution of adaptive genetic variation across space and time; dispersal potential; and size and connectivity of subpopulations. An understanding of limits to plasticity and evolutionary potential across traits, populations, and species and feedbacks between adaptive and demographic responses is lacking. Integrated knowledge of coupled ecological and evolutionary mechanisms will increase understanding of the resilience and probabilities of persistence of populations and species.


Asunto(s)
Evolución Biológica , Cambio Climático , Dinámica Poblacional , Adaptación Fisiológica/genética , Animales , Femenino , Variación Genética , Modelos Biológicos , Fenotipo , Plantas/genética , Selección Genética
15.
Front Immunol ; 12: 568729, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717060

RESUMEN

Vertebrates have evolved a complex immune system required for the identification of and coordinated response to harmful pathogens. Migratory species spend periods of their life-cycle in more than one environment, and their immune system consequently faces a greater diversity of pathogens residing in different environments. In facultatively anadromous salmonids, individuals may spend parts of their life-cycle in freshwater and marine environments. For species such as the brown trout Salmo trutta, sexes differ in their life-histories with females more likely to migrate to sea while males are more likely to stay and complete their life-cycle in their natal river. Salmonids have also undergone a lineage-specific whole genome duplication event, which may provide novel immune innovations but our current understanding of the differences in salmonid immune expression between the sexes is limited. We characterized the brown trout immune gene repertoire, identifying a number of canonical immune genes in non-salmonid teleosts to be duplicated in S. trutta, with genes involved in innate and adaptive immunity. Through genome-wide transcriptional profiling ("RNA-seq") of male and female livers to investigate sex differences in gene expression amplitude and alternative splicing, we identified immune genes as being generally male-biased in expression. Our study provides important insights into the evolutionary consequences of whole genome duplication events on the salmonid immune gene repertoire and how the sexes differ in constitutive immune expression.


Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Salmonidae/genética , Salmonidae/inmunología , Animales , Biología Computacional/métodos , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Genómica/métodos , Masculino , Especificidad de Órganos/genética , Trucha/genética , Trucha/inmunología
16.
Ecol Evol ; 11(12): 8347-8362, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188891

RESUMEN

The occurrence of alternative morphs within populations is common, but the underlying molecular mechanisms remain poorly understood. Many animals, for example, exhibit facultative migration, where two or more alternative migratory tactics (AMTs) coexist within populations. In certain salmonid species, some individuals remain in natal rivers all their lives, while others (in particular, females) migrate to sea for a period of marine growth. Here, we performed transcriptional profiling ("RNA-seq") of the brain and liver of male and female brown trout to understand the genes and processes that differentiate between migratory and residency morphs (AMT-associated genes) and how they may differ in expression between the sexes. We found tissue-specific differences with a greater number of genes expressed differentially in the liver (n = 867 genes) compared with the brain (n = 10) between the morphs. Genes with increased expression in resident livers were enriched for Gene Ontology terms associated with metabolic processes, highlighting key molecular-genetic pathways underlying the energetic requirements associated with divergent migratory tactics. In contrast, smolt-biased genes were enriched for biological processes such as response to cytokines, suggestive of possible immune function differences between smolts and residents. Finally, we identified evidence of sex-biased gene expression for AMT-associated genes in the liver (n = 12) but not the brain. Collectively, our results provide insights into tissue-specific gene expression underlying the production of alternative life histories within and between the sexes, and point toward a key role for metabolic processes in the liver in mediating divergent physiological trajectories of migrants versus residents.

17.
Proc Biol Sci ; 277(1699): 3391-400, 2010 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-20554553

RESUMEN

Phenotypic plasticity plays a key role in modulating how environmental variation influences population dynamics, but we have only rudimentary understanding of how plasticity interacts with the magnitude and predictability of environmental variation to affect population dynamics and persistence. We developed a stochastic individual-based model, in which phenotypes could respond to a temporally fluctuating environmental cue and fitness depended on the match between the phenotype and a randomly fluctuating trait optimum, to assess the absolute fitness and population dynamic consequences of plasticity under different levels of environmental stochasticity and cue reliability. When cue and optimum were tightly correlated, plasticity buffered absolute fitness from environmental variability, and population size remained high and relatively invariant. In contrast, when this correlation weakened and environmental variability was high, strong plasticity reduced population size, and populations with excessively strong plasticity had substantially greater extinction probability. Given that environments might become more variable and unpredictable in the future owing to anthropogenic influences, reaction norms that evolved under historic selective regimes could imperil populations in novel or changing environmental contexts. We suggest that demographic models (e.g. population viability analyses) would benefit from a more explicit consideration of how phenotypic plasticity influences population responses to environmental change.


Asunto(s)
Adaptación Fisiológica/fisiología , Modelos Biológicos , Fenotipo , Animales , Simulación por Computador , Ambiente , Plantas , Reproducción , Procesos Estocásticos
18.
Conserv Physiol ; 8(1): coaa096, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33093959

RESUMEN

Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR-baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.

19.
Ecol Evol ; 10(4): 1762-1783, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128115

RESUMEN

The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine-scale spawning movements of brown trout between their lake-feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non-natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half-sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.

20.
J Anim Ecol ; 78(2): 376-87, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19054224

RESUMEN

1. In order to reproduce successfully in a temporally varying environment, iteroparous animals must exhibit considerable behavioural flexibility across their lifetimes. By adjusting timing of breeding each year, parents can ensure optimal overlap between the energy intensive period of offspring production and the seasonal peak in favourable environmental conditions, thereby increasing their chances of successfully rearing young. 2. Few studies investigate variation among individuals in how they respond to fluctuating conditions, or how selection acts on these individual differences, but this information is essential for understanding how populations will cope with rapid environmental change. 3. We explored inter-annual trends in breeding time and individual responses to environmental variability in common guillemots Uria aalge, an important marine top predator in the highly variable California Current System. Complex, nonlinear relationships between phenology and oceanic and climate variables were found at the population level. Using a novel application of a statistical technique called random regression, we showed that individual females responded in a nonlinear fashion to environmental variability, and that reaction norm shape differed among females. 4. The pattern and strength of selection varied substantially over a 34-year period, but in general, earlier laying was favoured. Females deviating significantly from the population mean laying date each year also suffered reduced breeding success, with the strength of nonlinear selection varying in relation to environmental conditions. 5. We discuss our results in the wider context of an emerging literature on the evolutionary ecology of individual-level plasticity in the wild. Better understanding of how species-specific factors and local habitat features affect the timing and success of breeding will improve our ability to predict how populations will respond to climate change.


Asunto(s)
Charadriiformes/fisiología , Ecosistema , Reproducción/fisiología , Animales , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA