Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Calcif Tissue Int ; 95(2): 174-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25000990

RESUMEN

We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.


Asunto(s)
Aminoácidos Aromáticos/farmacología , Osteoclastos/efectos de los fármacos , Fenilalanina/farmacología , Triptófano/farmacología , Tirosina/farmacología , Animales , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dieta , Suplementos Dietéticos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
J Cardiovasc Dev Dis ; 7(2)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466575

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial "concealed phase" that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/ß-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.

3.
J Bone Miner Res ; 32(11): 2182-2193, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28727234

RESUMEN

Age-dependent bone loss occurs in humans and in several animal species, including rodents. The underlying causal mechanisms are probably multifactorial, although an age-associated increase in the generation of reactive oxygen species has been frequently implicated. We previously reported that aromatic amino acids function as antioxidants, are anabolic for bone, and that they may potentially play a protective role in an aging environment. We hypothesized that upon oxidation the aromatic amino acids would not only lose their anabolic effects but also potentially become a catabolic byproduct. When measured in vivo in C57BL/6 mice, the tryptophan oxidation product and kynurenine precursor, N-formylkynurenine (NFK), was found to increase with age. We tested the direct effects of feeding kynurenine (kyn) on bone mass and also tested the short-term effects of intraperitoneal kyn injection on bone turnover in CD-1 mice. µCT analyses showed kyn-induced bone loss. Levels of serum markers of osteoclastic activity (pyridinoline [PYD] and RANKL) increased significantly with kyn treatment. In addition, histological and histomorphometric studies showed an increase in osteoclastic activity in the kyn-treated groups in both dietary and injection-based studies. Further, kyn treatment significantly increased bone marrow adiposity, and BMSCs isolated from the kyn-injected mice exhibited decreased mRNA expression of Hdac3 and its cofactor NCoR1 and increased expression of lipid storage genes Cidec and Plin1. A similar pattern of gene expression is observed with aging. In summary, our data show that increasing kyn levels results in accelerated skeletal aging by impairing osteoblastic differentiation and increasing osteoclastic resorption. These data would suggest that kyn could play a role in age-induced bone loss. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Resorción Ósea/patología , Quinurenina/metabolismo , Triptófano/metabolismo , Adiposidad , Envejecimiento/sangre , Animales , Peso Corporal , Resorción Ósea/sangre , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/metabolismo , Huesos/diagnóstico por imagen , Huesos/patología , Calcificación Fisiológica , Diferenciación Celular , Dieta , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/análogos & derivados , Quinurenina/sangre , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Microtomografía por Rayos X
4.
Arch Oral Biol ; 60(12): 1699-707, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26431826

RESUMEN

OBJECTIVES: Bisphosphonates become adsorbed on hydroxyapatite crystals in the bone matrix. In case of side-effects, stopping the treatment would not affect the bisphosphonates already deposited in bone. This study tests the feasibility of in-vivo targeted removal of bisphosphonates from bone using chelating agents. DESIGN: 32 Sprague Dawley rats were given an injection of fluorescent pamidronate (OsteoSense EX; 0.16nmol/g). They were treated with either systemic (cadmium) or local [ethylenediaminetetraacetic (EDTA) or citric acid (CA)] chelating agents to induce the removal of the bisphosphonate from bone. We evaluated the decrease in fluorescence in the alveolar bone, femur, tibia, and vertebrae. We also analyzed the systemic effects of treatment. RESULTS: Systemic chelation reduced the pamidronate signal universally. However, the maximum reduction was observed in the alveolar bone and femur (22% and 21%, p values 0.008 and 0.028, respectively). Systemic chelation did not impair calcium homeostasis. The chelation effect was not due to a systemic toxic effect on the liver or kidney. On the other hand local chelation at the extraction site significantly (p=0.011) decreased the pamidronate signal at bony surfaces of the socket. CONCLUSIONS: Systemic and local chelating agents can remove bisphosphonate from bone. This study establishes a new concept for the prevention of side effects of bisphosphonates during high-risk situations.


Asunto(s)
Huesos/metabolismo , Quelantes/farmacología , Difosfonatos/metabolismo , Animales , Densidad Ósea , Cadmio/farmacología , Calcio/metabolismo , Ácido Cítrico/farmacología , Ácido Edético/farmacología , Estudios de Factibilidad , Pruebas de Función Renal , Pamidronato , Hormona Paratiroidea/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA