Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(22): 10633-10641, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37916770

RESUMEN

Fluorescence microscopy enables specific visualization of proteins in living cells and has played an important role in our understanding of the protein subcellular location and function. Some proteins, however, show altered localization or function when labeled using direct fusions to fluorescent proteins, making them difficult to study in live cells. Additionally, the resolution of fluorescence microscopy is limited to ∼200 nm, which is 2 orders of magnitude larger than the size of most proteins. To circumvent these challenges, we previously developed LIVE-PAINT, a live-cell super-resolution approach that takes advantage of short interacting peptides to transiently bind a fluorescent protein to the protein-of-interest. Here, we successfully use LIVE-PAINT to image yeast membrane proteins that do not tolerate the direct fusion of a fluorescent protein by using peptide tags as short as 5-residues. We also demonstrate that it is possible to resolve multiple proteins at the nanoscale concurrently using orthogonal peptide interaction pairs.


Asunto(s)
Péptidos , Proteínas , Diagnóstico por Imagen , Saccharomyces cerevisiae , Colorantes Fluorescentes/química
2.
J Struct Biol ; 215(3): 107981, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37245604

RESUMEN

Biomaterials for tissue regeneration must mimic the biophysical properties of the native physiological environment. A protein engineering approach allows the generation of protein hydrogels with specific and customised biophysical properties designed to suit a particular physiological environment. Herein, repetitive engineered proteins were successfully designed to form covalent molecular networks with defined physical characteristics able to sustain cell phenotype. Our hydrogel design was made possible by the incorporation of the SpyTag (ST) peptide and multiple repetitive units of the SpyCatcher (SC) protein that spontaneously formed covalent crosslinks upon mixing. Changing the ratios of the protein building blocks (ST:SC), allowed the viscoelastic properties and gelation speeds of the hydrogels to be altered and controlled. The physical properties of the hydrogels could readily be altered further to suit different environments by tuning the key features in the repetitive protein sequence. The resulting hydrogels were designed with a view to allow cell attachment and encapsulation of liver derived cells. Biocompatibility of the hydrogels was assayed using a HepG2 cell line constitutively expressing GFP. The cells remained viable and continued to express GFP whilst attached or encapsulated within the hydrogel. Our results demonstrate how this genetically encoded approach using repetitive proteins could be applied to bridge engineering biology with nanotechnology creating a level of biomaterial customisation previously inaccessible.


Asunto(s)
Hidrogeles , Análisis por Matrices de Proteínas , Proteínas/genética , Materiales Biocompatibles/química , Secuencia de Aminoácidos
3.
Eur Phys J E Soft Matter ; 46(6): 42, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294385

RESUMEN

We present and analyze video-microscopy-based single-particle-tracking measurements of the budding yeast (Saccharomyces cerevisiae) membrane protein, Pma1, fluorescently labeled either by direct fusion to the switchable fluorescent protein, mEos3.2, or by a novel, light-touch, labeling scheme, in which a 5 amino acid tag is directly fused to the C-terminus of Pma1, which then binds mEos3.2. The track diffusivity distributions of these two populations of single-particle tracks differ significantly, demonstrating that labeling method can be an important determinant of diffusive behavior. We also applied perturbation expectation maximization (pEMv2) (Koo and Mochrie in Phys Rev E 94(5):052412, 2016), which sorts trajectories into the statistically optimum number of diffusive states. For both TRAP-labeled Pma1 and Pma1-mEos3.2, pEMv2 sorts the tracks into two diffusive states: an essentially immobile state and a more mobile state. However, the mobile fraction of Pma1-mEos3.2 tracks is much smaller ([Formula: see text]) than the mobile fraction of TRAP-labeled Pma1 tracks ([Formula: see text]). In addition, the diffusivity of Pma1-mEos3.2's mobile state is several times smaller than the diffusivity of TRAP-labeled Pma1's mobile state. Thus, the two different labeling methods give rise to very different overall diffusive behaviors. To critically assess pEMv2's performance, we compare the diffusivity and covariance distributions of the experimental pEMv2-sorted populations to corresponding theoretical distributions, assuming that Pma1 displacements realize a Gaussian random process. The experiment-theory comparisons for both the TRAP-labeled Pma1 and Pma1-mEos3.2 reveal good agreement, bolstering the pEMv2 approach.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Proteins ; 88(9): 1154-1161, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32105366

RESUMEN

There have been several studies suggesting that protein structures solved by NMR spectroscopy and X-ray crystallography show significant differences. To understand the origin of these differences, we assembled a database of high-quality protein structures solved by both methods. We also find significant differences between NMR and crystal structures-in the root-mean-square deviations of the C α atomic positions, identities of core amino acids, backbone, and side-chain dihedral angles, and packing fraction of core residues. In contrast to prior studies, we identify the physical basis for these differences by modeling protein cores as jammed packings of amino acid-shaped particles. We find that we can tune the jammed packing fraction by varying the degree of thermalization used to generate the packings. For an athermal protocol, we find that the average jammed packing fraction is identical to that observed in the cores of protein structures solved by X-ray crystallography. In contrast, highly thermalized packing-generation protocols yield jammed packing fractions that are even higher than those observed in NMR structures. These results indicate that thermalized systems can pack more densely than athermal systems, which suggests a physical basis for the structural differences between protein structures solved by NMR and X-ray crystallography.


Asunto(s)
Aminoácidos/química , Cristalografía por Rayos X/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Secuencia de Aminoácidos , Cristalización , Conjuntos de Datos como Asunto , Conformación Proteica , Proteínas/ultraestructura , Soluciones
5.
Langmuir ; 33(47): 13590-13597, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29094950

RESUMEN

Protein adsorption and assembly at interfaces provide a potentially versatile route to create useful constructs for fluid compartmentalization. In this context, we consider the interfacial assembly of a bacterial biofilm protein, BslA, at air-water and oil-water interfaces. Densely packed, high modulus monolayers form at air-water interfaces, leading to the formation of flattened sessile water drops. BslA forms elastic sheets at oil-water interfaces, leading to the production of stable monodisperse oil-in-water microcapsules. By contrast, water-in-oil microcapsules are unstable but display arrested rather than full coalescence on contact. The disparity in stability likely originates from a low areal density of BslA hydrophobic caps on the exterior surface of water-in-oil microcapsules, relative to the inverse case. In direct analogy with small molecule surfactants, the lack of stability of individual water-in-oil microcapsules is consistent with the large value of the hydrophilic-lipophilic balance (HLB number) calculated based on the BslA crystal structure. The occurrence of arrested coalescence indicates that the surface activity of BslA is similar to that of colloidal particles that produce Pickering emulsions, with the stability of partially coalesced structures ensured by interfacial jamming. Micropipette aspiration and flow in tapered capillaries experiments reveal intriguing reversible and nonreversible modes of mechanical deformation, respectively. The mechanical robustness of the microcapsules and the ability to engineer their shape and to design highly specific binding responses through protein engineering suggest that these microcapsules may be useful for biomedical applications.


Asunto(s)
Biopelículas , Proteínas Bacterianas , Cápsulas , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas
6.
Proteins ; 84(7): 900-11, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26917446

RESUMEN

Methionine (Met) is a structurally versatile amino acid most commonly found in protein cores and at protein-protein interfaces. Thus, a complete description of the structure of Met is important for a fundamental understanding of protein structure and design. In previous work, we showed that the hard-sphere dipeptide model is able to recapitulate the side-chain dihedral angle distributions observed in high-resolution protein crystal structures for the nine amino acids we have studied to date: Val, Thr, Ser, Leu, Ile, Cys, Tyr, Trp, and Phe. Using the same approach, we are also able to predict the observed χ1 and χ2 side-chain dihedral angle distributions for Met. However, the form of the side-chain dihedral angle distribution P(χ3 ) predicted by the hard-sphere model does not match the observed distribution. We investigate the possible origins of the discrepancy and find that specific bond lengths and angles in Met side chains strongly influence P(χ3 ). We then identify minimal additions to the hard-sphere dipeptide model necessary to quantitatively predict P(χ3 ) of Met, and its near isosteres norleucine (Nle) and selenomethionine (Mse). We find that adding weak attractive interactions between hydrogen atoms to the model is sufficient to achieve predictions for P(χ3 ) that closely match the observed P(χ3 ) distributions for Met, Nle, and Mse. We explicitly show that weak attractive interactions between hydrogens do not negatively affect the agreement between the predicted and observed side-chain dihedral angle distribution for Val, Leu, Ile, and Phe, as we expect for other amino acids. Proteins 2016; 84:900-911. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Dipéptidos/química , Metionina/química , Proteínas/química , Electrones , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Proteica
7.
Chembiochem ; 17(17): 1652-7, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27304706

RESUMEN

Fluorescence imaging is a powerful tool to study protein function in living cells. Here, we introduce a novel imaging strategy that is fully genetically encodable, does not require the use of exogenous substrates, and adds a minimally disruptive tag to the protein of interest (POI). Our method was based on a set of designed tetratricopeptide repeat affinity proteins (TRAPs) that specifically and reversibly interact with a short, extended peptide tag. We co-expressed the TRAPs fused to fluorescent proteins (FPs) and the peptide tags fused to the POIs. We illustrated the method using the Escherichia coli protein FtsZ and showed that our system could track distinct FtsZ structures under both low and high expression conditions in live cells. We anticipate that our imaging strategy will be a useful tool for imaging the subcellular localization of many proteins, especially those recalcitrant to imaging by direct tagging with FPs.


Asunto(s)
Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Péptidos/metabolismo , Proteínas Luminiscentes/genética , Viabilidad Microbiana , Péptidos/química , Péptidos/genética
8.
Expert Rev Proteomics ; 13(5): 481-93, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27031866

RESUMEN

All diseases can be fundamentally viewed as the result of malfunctioning cellular pathways. Protein engineering offers the potential to develop new tools that will allow these dysfunctional pathways to be better understood, in addition to potentially providing new routes to restore proper function. Here we discuss different approaches that can be used to change the intracellular activity of a protein by intervening at the protein level: targeted protein sequestration, protein recruitment, protein degradation, and selective inhibition of binding interfaces. The potential of each of these tools to be developed into effective therapeutic treatments will also be discussed, along with any major barriers that currently block their translation into the clinic.


Asunto(s)
Redes y Vías Metabólicas , Ingeniería de Proteínas/métodos , Humanos , Terapia Molecular Dirigida , Proteínas/efectos de los fármacos , Proteínas/metabolismo
9.
Adv Exp Med Biol ; 940: 167-177, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27677513

RESUMEN

The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types.


Asunto(s)
Hidrogeles/química , Proteínas/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
10.
Proteins ; 83(8): 1488-99, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018846

RESUMEN

Despite recent improvements in computational methods for protein design, we still lack a quantitative, predictive understanding of the intrinsic probabilities for amino acids to adopt particular side-chain conformations. Surprisingly, this question has remained unsettled for many years, in part because of inconsistent results from different experimental approaches. To explicitly determine the relative populations of different side-chain dihedral angles, we performed all-atom hard-sphere Langevin Dynamics simulations of leucine (Leu) and isoleucine (Ile) dipeptide mimetics with stereo-chemical constraints and repulsive-only steric interactions between non-bonded atoms. We determine the relative populations of the different χ(1) and χ(2) dihedral angle combinations as a function of the backbone dihedral angles ϕ and ψ. We also propose, and test, a mechanism for inter-conversion between the different side-chain conformations. Specifically, we discover that some of the transitions between side-chain dihedral angle combinations are very frequent, whereas others are orders of magnitude less frequent, because they require rare coordinated motions to avoid steric clashes. For example, to transition between different values of χ(2), the Leu side-chain bond angles κ(1) and κ(2) must increase, whereas to transition in χ(1), the Ile bond angles λ(1) and λ(2) must increase. These results emphasize the importance of computational approaches in stimulating further experimental studies of the conformations of side-chains in proteins. Moreover, our studies emphasize the power of simple steric models to inform our understanding of protein structure, dynamics, and design.


Asunto(s)
Isoleucina/química , Leucina/química , Conformación Proteica , Proteínas/química , Biología Computacional , Interacciones Hidrofóbicas e Hidrofílicas , Isoleucina/metabolismo , Leucina/metabolismo , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Proteínas/metabolismo
11.
J Am Chem Soc ; 137(32): 10367-73, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26207891

RESUMEN

In contrast to globular proteins, the structure of repeat proteins is dominated by a regular set of short-range interactions. This property may confer on the native state of such proteins significant elasticity. We probe the molecular origin of the spring-like behavior of repeat proteins using a designed tetratricopeptide repeat protein with three repeat units (CTPR3). Single-molecule fluorescence studies of variants of the protein with FRET pairs at different positions show a continuous expansion of the folded state of CTPR3 at low concentrations of a chemical denaturant, preceding the all-or-none transition to the unfolded state. This remarkable native-state expansion can be explained quantitatively by a reduction in the spring constant of the structure. Circular dichroism and tryptophan fluorescence spectroscopy further show that the expansion does not involve either unwinding of CTPR3 helices or unraveling of interactions within repeats. These findings point to hydrophobic inter-repeat contacts as the source of the elasticity of repeat proteins.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/química , Dicroismo Circular , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Proteínas/metabolismo , Espectrometría de Fluorescencia , Triptófano/química
12.
Biochem Soc Trans ; 43(5): 874-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517897

RESUMEN

Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class: tetratricopeptide repeat (TPR) proteins. In previous work, we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena (2011) Prot. Sci. 20: , 1042-1047; Main (2003) Structure 11: , 497-508]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena (2009) ACS Chem. Biol. 5: , 545-552; Cortajarena (2008) ACS Chem. Biol. 3: , 161-166; Jackrel (2009) Prot. Sci. 18: , 762-774; Kajander (2007) Acta Crystallogr. D Biol. Crystallogr. 63: , 800-811]. Here we focus on the development of one such TPR-peptide interaction for a practical application, affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications.


Asunto(s)
Indicadores y Reactivos/química , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Secuencias Repetitivas de Aminoácido , Animales , Línea Celular , Cromatografía de Afinidad , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/genética , Proteínas Inmovilizadas/metabolismo , Indicadores y Reactivos/metabolismo , Ligandos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
13.
Biopolymers ; 104(4): 334-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25784145

RESUMEN

Building on the pioneering work of Ho and DeGrado (J Am Chem Soc 1987, 109, 6751-6758) in the late 1980s, protein design approaches have revealed many fundamental features of protein structure and stability. We are now in the era that the early work presaged - the design of new proteins with practical applications and uses. Here we briefly survey some past milestones in protein design, in addition to highlighting recent progress and future aspirations.


Asunto(s)
Ingeniería de Proteínas/métodos , Animales , Humanos , Ingeniería de Proteínas/tendencias
14.
Biophys J ; 107(2): 384-392, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25028880

RESUMEN

The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control.


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/química , Conformación de Ácido Nucleico , Pinzas Ópticas , Conformación Proteica
15.
Proteins ; 82(10): 2574-84, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24912976

RESUMEN

The side-chain dihedral angle distributions of all amino acids have been measured from myriad high-resolution protein crystal structures. However, we do not yet know the dominant interactions that determine these distributions. Here, we explore to what extent the defining features of the side-chain dihedral angle distributions of different amino acids can be captured by a simple physical model. We find that a hard-sphere model for a dipeptide mimetic that includes only steric interactions plus stereochemical constraints is able to recapitulate the key features of the back-bone dependent observed amino acid side-chain dihedral angle distributions of Ser, Cys, Thr, Val, Ile, Leu, Phe, Tyr, and Trp. We find that for certain amino acids, performing the calculations with the amino acid of interest in the central position of a short α-helical segment improves the match between the predicted and observed distributions. We also identify the atomic interactions that give rise to the differences between the predicted distributions for the hard-sphere model of the dipeptide and that of the α-helical segment. Finally, we point out a case where the hard-sphere plus stereochemical constraint model is insufficient to recapitulate the observed side-chain dihedral angle distribution, namely the distribution P(χ3) for Met.


Asunto(s)
Aminoácidos/química , Dipéptidos/química , Modelos Moleculares , Algoritmos , Secuencia de Aminoácidos , Aminoácidos Aromáticos/química , Animales , Bases de Datos de Proteínas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Oligopéptidos/química , Conformación Proteica , Ingeniería de Proteínas/métodos , Proteínas/química , Estereoisomerismo
16.
Biophys J ; 105(10): 2403-11, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24268152

RESUMEN

To successfully design new proteins and understand the effects of mutations in natural proteins, we must understand the geometric and physicochemical principles underlying protein structure. The side chains of amino acids in peptides and proteins adopt specific dihedral angle combinations; however, we still do not have a fundamental quantitative understanding of why some side-chain dihedral angle combinations are highly populated and others are not. Here we employ a hard-sphere plus stereochemical constraint model of dipeptide mimetics to enumerate the side-chain dihedral angles of leucine (Leu) and isoleucine (Ile), and identify those conformations that are sterically allowed versus those that are not as a function of the backbone dihedral angles ϕ and ψ. We compare our results with the observed distributions of side-chain dihedral angles in proteins of known structure. With the hard-sphere plus stereochemical constraint model, we obtain agreement between the model predictions and the observed side-chain dihedral angle distributions for Leu and Ile. These results quantify the extent to which local, geometrical constraints determine protein side-chain conformations.


Asunto(s)
Dipéptidos/química , Isoleucina/química , Leucina/química , Modelos Moleculares , Proteínas/química , Conformación Molecular , Peptidomiméticos/química , Probabilidad , Estereoisomerismo , Termodinámica
17.
Biochem Soc Trans ; 41(5): 1131-1136, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24059497

RESUMEN

Protein engineering is at an exciting stage because designed protein-protein interactions are being used in many applications. For instance, three designed proteins are now in clinical trials. Although there have been many successes over the last decade, protein engineering still faces numerous challenges. Often, designs do not work as anticipated and they still require substantial redesign. The present review focuses on the successes, the challenges and the limitations of rational protein design today.


Asunto(s)
Ingeniería de Proteínas , Proteínas/uso terapéutico , Secuencias Repetitivas de Aminoácido/genética , Ensayos Clínicos como Asunto , Biología Computacional , Humanos , Mapas de Interacción de Proteínas/genética , Proteínas/química
18.
Gels ; 9(6)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37367151

RESUMEN

Protein engineering allows for the programming of specific building blocks to form functional and novel materials with customisable physical properties suitable for tailored engineering applications. We have successfully designed and programmed engineered proteins to form covalent molecular networks with defined physical characteristics. Our hydrogel design incorporates the SpyTag (ST) peptide and SpyCatcher (SC) protein that spontaneously form covalent crosslinks upon mixing. This genetically encodable chemistry allowed us to easily incorporate two stiff and rod-like recombinant proteins in the hydrogels and modulate the resulting viscoelastic properties. We demonstrated how differences in the composition of the microscopic building blocks change the macroscopic viscoelastic properties of the hydrogels. We specifically investigated how the identity of the protein pairs, the molar ratio of ST:SC, and the concentration of the proteins influence the viscoelastic response of the hydrogels. By showing tuneable changes in protein hydrogel rheology, we increased the capabilities of synthetic biology to create novel materials, allowing engineering biology to interface with soft matter, tissue engineering, and material science.

19.
Protein Sci ; 32(2): e4558, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36585831

RESUMEN

We present direct-LIVE-PAINT, an easy-to-implement approach for the nanoscopic imaging of protein structures in live cells using labeled binding peptides. We demonstrate the feasibility of direct-LIVE-PAINT with an actin-binding peptide fused to EGFP, the location of which can be accurately determined as it transiently binds to actin filaments. We show that direct-LIVE-PAINT can be used to image actin structures below the diffraction-limit of light and have used it to observe the dynamic nature of actin in live cells. We envisage a similar approach could be applied to imaging other proteins within live mammalian cells.


Asunto(s)
Citoesqueleto de Actina , Actinas , Animales , Actinas/metabolismo , Unión Proteica , Mamíferos
20.
Biophys J ; 102(10): 2345-52, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22677388

RESUMEN

The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design.


Asunto(s)
Modelos Moleculares , Treonina/química , Valina/química , Bases de Datos de Proteínas , Dipéptidos/química , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA