Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002692, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954678

RESUMEN

The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana/genética , Biopelículas/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
2.
Nature ; 573(7773): 276-280, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31485077

RESUMEN

The emergence of antibiotic-resistant bacteria through mutations or the acquisition of genetic material such as resistance plasmids represents a major public health issue1,2. Persisters are subpopulations of bacteria that survive antibiotics by reversibly adapting their physiology3-10, and can promote the emergence of antibiotic-resistant mutants11. We investigated whether persisters can also promote the spread of resistance plasmids. In contrast to mutations, the transfer of resistance plasmids requires the co-occurrence of both a donor and a recipient bacterial strain. For our experiments, we chose the facultative intracellular entero-pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) and Escherichia coli, a common member of the microbiota12. S. Typhimurium forms persisters that survive antibiotic therapy in several host tissues. Here we show that tissue-associated S. Typhimurium persisters represent long-lived reservoirs of plasmid donors or recipients. The formation of reservoirs of S. Typhimurium persisters requires Salmonella pathogenicity island (SPI)-1 and/or SPI-2 in gut-associated tissues, or SPI-2 at systemic sites. The re-seeding of these persister bacteria into the gut lumen enables the co-occurrence of donors with gut-resident recipients, and thereby favours plasmid transfer between various strains of Enterobacteriaceae. We observe up to 99% transconjugants within two to three days of re-seeding. Mathematical modelling shows that rare re-seeding events may suffice for a high frequency of conjugation. Vaccination reduces the formation of reservoirs of persisters after oral infection with S. Typhimurium, as well as subsequent plasmid transfer. We conclude that-even without selection for plasmid-encoded resistance genes-small reservoirs of pathogen persisters can foster the spread of promiscuous resistance plasmids in the gut.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Transferencia de Gen Horizontal , Mucosa Intestinal/microbiología , Plásmidos/genética , Salmonella typhimurium/genética , Animales , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Modelos Teóricos , Salmonella typhimurium/efectos de los fármacos , Vacunación
3.
Am J Epidemiol ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012125

RESUMEN

Serosurveys are a widely used tool to estimate the cumulative incidence, i.e. the fraction of a population that have been infected by a given pathogen. These surveys rely on serological assays that measure the level of pathogen-specific antibodies. Because antibody levels are waning, the fraction of previously infected individuals that have sero-reverted increases with time past infection. To avoid underestimating the true cumulative incidence, it is therefore essential to correct for waning antibody levels. We present an empirically-supported approach for sero-reversion correction in cumulative incidence estimation when sequential serosurveys are conducted in the context of a newly emerging infectious disease. The correction is based on the observed dynamics of antibody titers in sero-positive cases and validated using several in silico test scenarios. Furthermore, through this approach we revise a previous cumulative incidence estimate, which relies on the assumption of an exponentially-declining probability of sero-reversion over time, of SARS-CoV-2 of 76% in Manaus, Brazil, by October 2020 to 47.6% (43.5% - 53.5%). This estimate has implications e.g. for the proximity to herd immunity in Manaus in late 2020.

4.
Microbiology (Reading) ; 169(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37522891

RESUMEN

Pharmacokinetic-pharmacodynamic (PKPD) models, which describe how drug concentrations change over time and how that affects pathogen growth, have proven highly valuable in designing optimal drug treatments aimed at bacterial eradication. However, the fast rise of antimicrobial resistance calls for increased focus on an additional treatment optimization criterion: avoidance of resistance evolution. We demonstrate here how coupling PKPD and population genetics models can be used to determine treatment regimens that minimize the potential for antimicrobial resistance evolution. Importantly, the resulting modelling framework enables the assessment of resistance evolution in response to dynamic selection pressures, including changes in antimicrobial concentration and the emergence of adaptive phenotypes. Using antibiotics and antimicrobial peptides as an example, we discuss the empirical evidence and intuition behind individual model parameters. We further suggest several extensions of this framework that allow a more comprehensive and realistic prediction of bacterial escape from antimicrobials through various phenotypic and genetic mechanisms.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Bacterias/genética , Resistencia a Medicamentos
5.
Proc Biol Sci ; 290(1998): 20230396, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161327

RESUMEN

A fundamental goal in infection biology is to understand the emergence of variation in pathogen virulence-here defined as the decrease in host fitness caused by a pathogen. To uncover the sources of such variation, virulence can be decomposed into both host- and pathogen-associated components. However, decomposing virulence can be challenging owing to complex within-host pathogen dynamics such as bifurcating infections, which recently received increased empirical and theoretical attention. Bifurcating infections are characterized by the emergence of two distinct infection types: (i) terminal infections with high pathogen loads resulting in rapid host death, and (ii) persistent infections with lower loads and delayed host death. Here, we propose to use discrete mixture models to perform separate virulence decompositions for each infection type. Using this approach, we reanalysed a recently published experimental dataset on bacterial load and survival in Drosophila melanogaster. This analysis revealed several advantages of the new approach, most importantly the generation of a more comprehensive picture of the varying sources of virulence in different bacterial species. Beyond this application, our approach could provide valuable information for ground-truthing and improving theoretical models of within-host infection dynamics, which are developed to predict variation in infection outcome and pathogen virulence.


Asunto(s)
Drosophila melanogaster , Animales , Virulencia , Carga Bacteriana
6.
Proc Biol Sci ; 290(1998): 20222572, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161335

RESUMEN

HIV-1 subtypes differ in their clinical manifestations and the speed in which they spread. In particular, the frequency of subtype C is increasing relative to subtypes A and D. We investigate whether HIV-1 subtypes A, C and D differ in their per-pathogen virulence and to what extend this explains the difference in spread between these subtypes. We use data from the hormonal contraception and HIV-1 genital shedding and disease progression among women with primary HIV infection study. For each study participant, we determine the set-point viral load value, CD4+ T cell level after primary infection and CD4+ T cell decline. Based on both the CD4+ T cell count after primary infection and CD4+ T cell decline, we estimate the time until AIDS. We then obtain our newly introduced measure of virulence as the inverse of the estimated time until AIDS. After fitting a model to the measured virulence and set-point viral load values, we tested if this relation varies per subtype. We found that subtype C has a significantly higher per-pathogen virulence than subtype A. Based on an evolutionary model, we then hypothesize that differences in the primary length of infection period cause the observed variation in the speed of spread of the subtypes.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , VIH-1 , Humanos , Femenino , Virulencia , Evolución Biológica
7.
PLoS Pathog ; 17(3): e1009443, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788905

RESUMEN

Antimicrobial peptides (AMPs) are key components of innate immune defenses. Because of the antibiotic crisis, AMPs have also come into focus as new drugs. Here, we explore whether prior exposure to sub-lethal doses of AMPs increases bacterial survival and abets the evolution of resistance. We show that Escherichia coli primed by sub-lethal doses of AMPs develop tolerance and increase persistence by producing curli or colanic acid, responses linked to biofilm formation. We develop a population dynamic model that predicts that priming delays the clearance of infections and fuels the evolution of resistance. The effects we describe should apply to many AMPs and other drugs that target the cell surface. The optimal strategy to tackle tolerant or persistent cells requires high concentrations of AMPs and fast and long-lasting expression. Our findings also offer a new understanding of non-inherited drug resistance as an adaptive response and could lead to measures that slow the evolution of resistance.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Microbiana/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Meliteno/farmacología , Polisacáridos/metabolismo
8.
PLoS Biol ; 18(12): e3001010, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370289

RESUMEN

An often-returning question for not only HIV-1, but also other organisms, is how predictable evolutionary paths are. The environment, mutational history, and random processes can all impact the exact evolutionary paths, but to which extent these factors contribute to the evolutionary dynamics of a particular system is an open question. Especially in a virus like HIV-1, with a large mutation rate and large population sizes, evolution is expected to be highly predictable if the impact of environment and history is low, and evolution is not neutral. We investigated the effect of environment and mutational history by analyzing sequences from a long-term evolution experiment, in which HIV-1 was passaged on 2 different cell types in 8 independent evolutionary lines and 8 derived lines, 4 of which involved a switch of the environment. The experiments lasted for 240-300 passages, corresponding to approximately 400-600 generations or almost 3 years. The sequences show signs of extensive parallel evolution-the majority of mutations that are shared between independent lines appear in both cell types, but we also find that both environment and mutational history significantly impact the evolutionary paths. We conclude that HIV-1 evolution is robust to small changes in the environment, similar to a transmission event in the absence of an immune response or drug pressure. We also find that the fitness landscape of HIV-1 is largely smooth, although we find some evidence for both positive and negative epistatic interactions between mutations.


Asunto(s)
Evolución Molecular , VIH-1/genética , VIH-1/metabolismo , Línea Celular Tumoral , Evolución Molecular Dirigida/métodos , Aptitud Genética/genética , Infecciones por VIH/virología , Seropositividad para VIH , Humanos , Modelos Genéticos , Mutación/genética , Tasa de Mutación
9.
PLoS Comput Biol ; 18(7): e1010329, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35881633

RESUMEN

Bacteria have adaptive immunity against viruses (phages) in the form of CRISPR-Cas immune systems. Currently, 6 types of CRISPR-Cas systems are known and the molecular study of three of these has revealed important molecular differences. It is unknown if and how these molecular differences change the outcome of phage infection and the evolutionary pressure the CRISPR-Cas systems faces. To determine the importance of these molecular differences, we model a phage outbreak entering a population defending exclusively with a type I/II or a type III CRISPR-Cas system. We show that for type III CRISPR-Cas systems, rapid phage extinction is driven by the probability to acquire at least one resistance spacer. However, for type I/II CRISPR-Cas systems, rapid phage extinction is characterized by an a threshold-like behaviour: any acquisition probability below this threshold leads to phage survival whereas any acquisition probability above it, results in phage extinction. We also show that in the absence of autoimmunity, high acquisition rates evolve. However, when CRISPR-Cas systems are prone to autoimmunity, intermediate levels of acquisition are optimal during a phage outbreak. As we predict an optimal probability of spacer acquisition 2 factors of magnitude above the one that has been measured, we discuss the origin of such a discrepancy. Finally, we show that in a biologically relevant parameter range, a type III CRISPR-Cas system can outcompete a type I/II CRISPR-Cas system with a slightly higher probability of acquisition.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Bacterias , Bacteriófagos/genética , Evolución Biológica , Sistemas CRISPR-Cas/genética
10.
Nature ; 544(7651): 498-502, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28405025

RESUMEN

Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.


Asunto(s)
Afinidad de Anticuerpos , Inmunoglobulina A/inmunología , Intestinos/inmunología , Intestinos/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/inmunología , Animales , Adhesión Bacteriana , Vacunas Bacterianas , Ciego/inmunología , Ciego/microbiología , Recuento de Colonia Microbiana , Conjugación Genética , Femenino , Humanos , Masculino , Ratones , Plásmidos/genética , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad
11.
Proc Biol Sci ; 289(1986): 20221300, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350213

RESUMEN

To curb the rising threat of antimicrobial resistance, we need to understand the routes to antimicrobial treatment failure. Bacteria can survive treatment by using both genetic and phenotypic mechanisms to diminish the effect of antimicrobials. We assemble empirical data showing that, for example, Pseudomonas aeruginosa infections frequently contain persisters, transiently non-growing cells unaffected by antibiotics (AB) and hyper-mutators, mutants with elevated mutation rates, and thus higher probability of genetic resistance emergence. Resistance, persistence and hyper-mutation dynamics are difficult to disentangle experimentally. Hence, we use stochastic population modelling and deterministic fitness calculations to investigate the relative importance of genetic and phenotypic mechanisms for immediate treatment failure and establishment of prolonged, chronic infections. We find that persistence causes 'hidden' treatment failure with very low cell numbers if antimicrobial concentrations prevent growth of genetically resistant cells. Persister cells can regrow after treatment is discontinued and allow for resistance evolution in the absence of AB. This leads to different mutational routes during treatment and relapse of an infection. By contrast, hyper-mutation facilitates resistance evolution during treatment, but rarely contributes to treatment failure. Our findings highlight the time and concentration dependence of different bacterial mechanisms to escape AB killing, which should be considered when designing 'failure-proof' treatments.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Bacterianas/microbiología , Bacterias/genética , Mutación , Insuficiencia del Tratamiento , Farmacorresistencia Bacteriana/genética , Pseudomonas aeruginosa/genética
12.
PLoS Comput Biol ; 17(2): e1008728, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635863

RESUMEN

Large-scale serological testing in the population is essential to determine the true extent of the current SARS-CoV-2 pandemic. Serological tests measure antibody responses against pathogens and use predefined cutoff levels that dichotomize the quantitative test measures into sero-positives and negatives and use this as a proxy for past infection. With the imperfect assays that are currently available to test for past SARS-CoV-2 infection, the fraction of seropositive individuals in serosurveys is a biased estimator of the cumulative incidence and is usually corrected to account for the sensitivity and specificity. Here we use an inference method-referred to as mixture-model approach-for the estimation of the cumulative incidence that does not require to define cutoffs by integrating the quantitative test measures directly into the statistical inference procedure. We confirm that the mixture model outperforms the methods based on cutoffs, leading to less bias and error in estimates of the cumulative incidence. We illustrate how the mixture model can be used to optimize the design of serosurveys with imperfect serological tests. We also provide guidance on the number of control and case sera that are required to quantify the test's ambiguity sufficiently to enable the reliable estimation of the cumulative incidence. Lastly, we show how this approach can be used to estimate the cumulative incidence of classes of infections with an unknown distribution of quantitative test measures. This is a very promising application of the mixture-model approach that could identify the elusive fraction of asymptomatic SARS-CoV-2 infections. An R-package implementing the inference methods used in this paper is provided. Our study advocates using serological tests without cutoffs, especially if they are used to determine parameters characterizing populations rather than individuals. This approach circumvents some of the shortcomings of cutoff-based methods at exactly the low cumulative incidence levels and test accuracies that we are currently facing in SARS-CoV-2 serosurveys.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiología , Modelos Estadísticos , Pandemias , SARS-CoV-2 , Anticuerpos Antivirales/sangre , Infecciones Asintomáticas/epidemiología , COVID-19/inmunología , Prueba Serológica para COVID-19/estadística & datos numéricos , Biología Computacional , Simulación por Computador , Intervalos de Confianza , Reacciones Falso Negativas , Reacciones Falso Positivas , Humanos , Incidencia , Funciones de Verosimilitud , Pandemias/estadística & datos numéricos , Curva ROC , Reproducibilidad de los Resultados , SARS-CoV-2/inmunología , Sensibilidad y Especificidad
13.
Immunol Rev ; 285(1): 134-146, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30129202

RESUMEN

In evolutionary biology and epidemiology, phylodynamic methods are widely used to infer population biological characteristics, such as the rates of replication, death, migration, or, in the epidemiological context, pathogen spread. More recently, these methods have been used to elucidate the dynamics of viruses within their hosts. Especially the application of phylogeographic approaches has the potential to shed light on anatomical colonization pathways and the exchange of viruses between distinct anatomical compartments. We and others have termed this phyloanatomy. Here, we review the promise and challenges of phyloanatomy, and compare them to more classical virus dynamics and population genetic approaches. We argue that the extremely strong selection pressures that exist within the host may represent the main obstacle to reliable phyloanatomic analysis.


Asunto(s)
Variación Antigénica/genética , Inmunidad , Filogenia , Virus/inmunología , Animales , Evolución Biológica , Selección Clonal Mediada por Antígenos , Humanos , Dinámica Poblacional , Análisis de la Célula Individual , Replicación Viral , Virus/genética , Secuenciación Completa del Genoma
14.
Mol Biol Evol ; 36(11): 2400-2414, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31251344

RESUMEN

One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability of evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been investigated with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two replicate HIV-1 populations for almost 1 year in each of two human T-cell lines. For each of the four evolution lines, we determined the genetic composition of the viral population at nine time points by deep sequencing the entire genome. Mutations that were carried by the majority of the viral population accumulated continuously over 1 year in each evolution line. Many majority mutations appeared in more than one evolution line, that is, our experiments showed an extreme degree of parallel evolution. In one of the evolution lines, 62% of the majority mutations also occur in another line. The parallelism impairs our ability to reconstruct the evolutionary history by phylogenetic methods. We show that one can infer the correct phylogenetic topology by including minority mutations in our analysis. We also find that mutation diversity at the beginning of the experiment is predictive of the frequency of majority mutations at the end of the experiment.

15.
Proc Biol Sci ; 287(1920): 20192386, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32075526

RESUMEN

Exposure to a pathogen primes many organisms to respond faster or more efficiently to subsequent exposures. Such priming can be non-specific or specific, and has been found to extend across generations. Disentangling and quantifying specific and non-specific effects is essential for understanding the genetic epidemiology of a system. By combining a large infection experiment and mathematical modelling, we disentangle different transgenerational effects in the crustacean model Daphnia magna exposed to different strains of the bacterial parasite Pasteuria ramosa. In the experiment, we exposed hosts to a high dose of one of three parasite strains, and subsequently challenged their offspring with multiple doses of the same (homologous) or a different (heterologous) strain. We find that exposure of Daphnia to Pasteuria decreases the susceptibility of their offspring by approximately 50%. This transgenerational protection is not larger for homologous than for heterologous parasite challenges. Methodologically, our work represents an important contribution not only to the analysis of immune priming in ecological systems but also to the experimental assessment of vaccines. We present, for the first time, an inference framework to investigate specific and non-specific effects of immune priming on the susceptibility distribution of hosts-effects that are central to understanding immunity and the effect of vaccines.


Asunto(s)
Daphnia/microbiología , Interacciones Huésped-Parásitos , Pasteuria/fisiología , Animales , Daphnia/inmunología , Daphnia/fisiología , Interacciones Huésped-Patógeno
16.
Mol Biol Evol ; 35(1): 27-37, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029206

RESUMEN

Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor.


Asunto(s)
Recuento de Linfocito CD4/métodos , Infecciones por VIH/transmisión , Carga Viral/métodos , Adulto , Linfocitos T CD4-Positivos/patología , Estudios de Cohortes , Femenino , Genotipo , VIH-1/genética , Humanos , Masculino , Fenotipo , Filogenia , Virulencia
17.
PLoS Pathog ; 13(5): e1006313, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28472201

RESUMEN

The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization. This defines numerical requirements for HIV-1 virion neutralization and thereby enables mathematical modelling of in vitro and in vivo antibody neutralization efficacy. The model we developed accurately predicts antibody efficacy in animal passive immunization studies and provides estimates for protective mucosal antibody concentrations. Furthermore, we derive estimates of the probability for a single virion to start host infection and the risks of male-to-female HIV-1 transmission per sexual intercourse. Our work thereby delivers comprehensive quantitative insights into both the molecular principles governing HIV-antibody interactions and the initial steps of mucosal HIV-1 transmission. These insights, alongside the underlying, adaptable modelling framework presented here, will be valuable for supporting in silico pre-trial planning and post-hoc evaluation of HIV-1 vaccination or antibody treatment trials.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/transmisión , VIH-1/inmunología , Animales , Anticuerpos Neutralizantes , Línea Celular , Femenino , Genes Reporteros , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Inmunización Pasiva , Masculino , Modelos Teóricos , Membrana Mucosa/virología , Mutación , Virión
18.
Nature ; 494(7437): 353-6, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23426324

RESUMEN

Pathogens often infect hosts through collective actions: they secrete growth-promoting compounds or virulence factors, or evoke host reactions that fuel the colonization of the host. Such behaviours are vulnerable to the rise of mutants that benefit from the collective action without contributing to it; how these behaviours can be evolutionarily stable is not well understood. We address this question using the intestinal pathogen Salmonella enterica serovar Typhimurium (hereafter termed S. typhimurium), which manipulates its host to induce inflammation, and thereby outcompetes the commensal microbiota. Notably, the virulence factors needed for host manipulation are expressed in a bistable fashion, leading to a slow-growing subpopulation that expresses virulence genes, and a fast-growing subpopulation that is phenotypically avirulent. Here we show that the expression of the genetically identical but phenotypically avirulent subpopulation is essential for the evolutionary stability of virulence in this pathogen. Using a combination of mathematical modelling, experimental evolution and competition experiments we found that within-host evolution leads to the emergence of mutants that are genetically avirulent and fast-growing. These mutants are defectors that exploit inflammation without contributing to it. In infection experiments initiated with wild-type S. typhimurium, defectors increase only slowly in frequency. In a genetically modified S. typhimurium strain in which the phenotypically avirulent subpopulation is reduced in size, defectors rise more rapidly, inflammation ceases prematurely, and S. typhimurium is quickly cleared from the gut. Our results establish that host manipulation by S. typhimurium is a cooperative trait that is vulnerable to the rise of avirulent defectors; the expression of a phenotypically avirulent subpopulation that grows as fast as defectors slows down this process, and thereby promotes the evolutionary stability of virulence. This points to a key role of bistable virulence gene expression in stabilizing cooperative virulence and may lead the way to new approaches for controlling pathogens.


Asunto(s)
Evolución Biológica , Fenotipo , Salmonella typhimurium/patogenicidad , Animales , Interacciones Huésped-Patógeno , Inflamación/microbiología , Inflamación/patología , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , Mutación , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/prevención & control , Infecciones por Salmonella/transmisión , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Virulencia/genética , Virulencia/fisiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
Proc Biol Sci ; 285(1874)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540517

RESUMEN

Antibiotic resistance constitutes one of the most pressing public health concerns. Antimicrobial peptides (AMPs) of multicellular organisms are considered part of a solution to this problem, and AMPs produced by bacteria such as colistin are last-resort drugs. Importantly, AMPs differ from many antibiotics in their pharmacodynamic characteristics. Here we implement these differences within a theoretical framework to predict the evolution of resistance against AMPs and compare it to antibiotic resistance. Our analysis of resistance evolution finds that pharmacodynamic differences all combine to produce a much lower probability that resistance will evolve against AMPs. The finding can be generalized to all drugs with pharmacodynamics similar to AMPs. Pharmacodynamic concepts are familiar to most practitioners of medical microbiology, and data can be easily obtained for any drug or drug combination. Our theoretical and conceptual framework is, therefore, widely applicable and can help avoid resistance evolution if implemented in antibiotic stewardship schemes or the rational choice of new drug candidates.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Microbiana/genética , Evolución Molecular , Simulación por Computador , Pruebas de Sensibilidad Microbiana , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA