Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int Microbiol ; 27(2): 505-512, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37498437

RESUMEN

As a consequence of alcoholic fermentation (AF) in wine, several compounds are released by yeasts, and some of them are linked to the general quality and mouthfeel perceptions in wine. However, others, such as succinic acid, act as inhibitors, mainly of malolactic fermentation. Succinic acid is produced by non-Saccharomyces and Saccharomyces yeasts during the initial stages of AF, and the presence of some amino acids such as γ-aminobutyric acid (GABA) and glutamic acid can increase the concentration of succinic acid. However, the influence of these amino acids on succinic acid production has been studied very little to date. In this work, we studied the production of succinic acid by different strains of non-Saccharomyces and Saccharomyces yeasts during AF in synthetic must, and the influence of the addition of GABA or glutamic acid or a combination of both. The results showed that succinic acid can be produced by non-Saccharomyces yeasts with values in the range of 0.2-0.4 g/L. Moreover, the addition of GABA or glutamic acid can increase the concentration of succinic acid produced by some strains to almost 100 mg/L more than the control, while other strains produce less. Consequently, higher succinic acid production by non-Saccharomyces yeast in coinoculated fermentations with S. cerevisiae strains could represent a risk of inhibiting Oenococcus oeni and therefore the MLF.


Asunto(s)
Oenococcus , Vino , Vino/análisis , Vino/microbiología , Saccharomyces cerevisiae/metabolismo , Ácido Glutámico/metabolismo , Ácido Succínico/metabolismo , Levaduras/metabolismo , Aminoácidos , Ácido gamma-Aminobutírico/metabolismo , Oenococcus/metabolismo , Fermentación
2.
Food Microbiol ; 112: 104212, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36906299

RESUMEN

The use of Torulaspora delbrueckii in the alcoholic fermentation (AF) of grape must is increasingly studied and used in the wine industry. In addition to the organoleptic improvement of wines, the synergy of this yeast species with the lactic acid bacterium Oenococcus oeni is an interesting field of study. In this work, 60 strain combinations were compared: 3 strains of Saccharomyces cerevisiae (Sc) and 4 strains of Torulaspora delbrueckii (Td) in sequential AF, and four strains of O. oeni (Oo) in malolactic fermentation (MLF). The objective was to describe the positive or negative relationships of these strains with the aim of finding the combination that ensures better MLF performance. In addition, a new synthetic grape must has been developed that allows the success of AF and subsequent MLF. Under these conditions, the Sc-K1 strain would be unsuitable for carrying out MLF unless there is prior inoculation with Td-Prelude, Td-Viniferm or Td-Zymaflore always with the Oo-VP41 combination. However, from all the trials performed, it appears that the combinations of sequential AF with Td-Prelude and Sc-QA23 or Sc-CLOS, followed by MLF with Oo-VP41, reflected a positive effect of T. delbrueckii compared to inoculation of Sc alone, such as a reduction in L-malic consumption time. In conclusion, the obtained results highlight the relevance of strain selection and yeast-LAB strain compatibility in wine fermentations. The study also reveals the positive effect on MLF of some T. delbrueckii strains.


Asunto(s)
Oenococcus , Torulaspora , Vitis , Vino , Saccharomyces cerevisiae , Fermentación , Vino/microbiología , Malatos
3.
Int Microbiol ; 25(1): 1-15, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34347199

RESUMEN

This review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the world from cereals or fruit juices. The alcoholic fermentation converting sugars into ethanol is usually carried out by yeasts, mainly Saccharomyces cerevisiae, which can grow directly using fruit sugars, such as those in grapes for wine or apples for cider, or on previously hydrolyzed starch of cereals, such as for beers. Some of these beverages, or the worts obtained from cereals, can be distilled to obtain spirits. Besides S. cerevisiae, all alcoholic beverages can contain other microorganisms and especially in spontaneous fermentation when starter cultures are not used. These other microbes are mostly lactic acid bacteria and other yeasts-the non-Saccharomyces yeasts. The interactions between all these microorganisms are very diverse and complex, as in any natural occurring ecosystem, including food fermentations. To describe them, we have followed a simplified ecological classification of the interactions. The negative ones are amensalism, by which a metabolic product of one species has a negative effect on others, and antagonism, by which one microbe competes directly with others. The positive interactions are commensalism, by which one species has benefits but no apparent effect on others, and synergism, by which there are benefits for all the microbes and also for the final product. The main interactions in alcoholic beverages are between S. cerevisiae and non-Saccharomyces and between yeasts and lactic acid bacteria. These interactions can be related to metabolites produced by fermentation such as ethanol, or to secondary metabolites such as proteinaceous toxins, or are feed-related, either by competition for nutrients or by benefit from released compounds during yeast autolysis. The positive or negative effects of these interactions on the organoleptic qualities of the final product are also revised. Focusing mainly on the alcoholic beverages produced by spontaneous fermentations, this paper reviews the interactions between the different yeasts and lactic acid bacteria in wine, cider, beer, and in spirits such as tequila, mezcal and cachaça.


Asunto(s)
Saccharomyces cerevisiae , Vino , Bebidas Alcohólicas/análisis , Ecosistema , Fermentación , Interacciones Microbianas , Vino/análisis , Levaduras
4.
Food Microbiol ; 103: 103964, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35082081

RESUMEN

Yeast metabolism depends on growing conditions, which include the chemical composition of the medium, temperature and growth time. Historically, fatty acid profiles have been used to differentiate yeasts growing in liquid media. The present study determined the fatty acids of Saccharomyces species in colonies. Using the same method, the effect of that the number of colonies and growth time had on solid media allowed us to determine the metabolomic profiles of the cells. Our results showed that the lipid and metabolomic profiles of the cells evolved as the colony grew. Interestingly, some strains of Saccharomyces cerevisiae have been were differentiated using the fatty acid profile of a colony; concretely indeed EC1118 and QA23 strains were separated from ICV-K1 and BM4x4. The synthesis of saturated fatty acids was greater than that of unsaturated fatty acids during the first two days of cell growth on a solid medium compared to a liquid medium. Unsaturated fatty acids subsequently became predominant. Finally, this methodology could be useful for carrying out physiological studies in a complete or defined solid growth medium allowing the supplementation of compounds, which inhibit or activate the growth of yeasts.


Asunto(s)
Saccharomyces , Vino , Diferenciación Celular , Fermentación , Lípidos , Metaboloma
5.
Food Microbiol ; 99: 103839, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119090

RESUMEN

The use of non-Saccharomyces yeast together with S. cerevisiae in winemaking is a current trend. Apart from the organoleptic modulation of the wine, the composition of the resulting yeast lees is different and may thus impact malolactic fermentation (MLF). Yeasts of Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima were inactivated and added to a synthetic wine. Three different strains of Oenococcus oeni were inoculated and MLF was monitored. Non-Saccharomyces lees, especially from some strains of T. delbrueckii, showed higher compatibility with some O. oeni strains, with a shorter MLF and a maintained bacterial cell viability. The supplementation of lees increased nitrogen compounds available by O. oeni. A lower mannoprotein consumption was related with longer MLF. Amino acid assimilation by O. oeni was strain specific. There may be many other compounds regulating these yeast lees-O. oeni interactions apart from the well-known mannoproteins and amino acids. This is the first study of MLF with different O. oeni strains in the presence of S. cerevisiae and non-Saccharomyces yeast lees to report a strain-specific interaction between them.


Asunto(s)
Malatos/metabolismo , Oenococcus/metabolismo , Vino/microbiología , Levaduras/metabolismo , Medios de Cultivo/metabolismo , Fermentación , Filogenia , Levaduras/clasificación , Levaduras/genética
6.
Food Microbiol ; 61: 23-32, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27697166

RESUMEN

The thioredoxin system protects against oxidative stress through the reversible oxidation of the thioredoxin active center dithiol to a disulphide. The genome of Oenococcus oeni PSU-1 contains three thioredoxin genes (trxA1, trxA2, trxA3), one thioredoxin reductase (trxB) and one ferredoxin reductase (fdr) which, until recently, was annotated as a second thioredoxin reductase. For the first time, the entire thioredoxin system in several O. oeni strains isolated from wine has been analysed. Comparisons at the DNA and protein levels have been undertaken between sequences from O. oeni and other genera and species, and the genera Leuconostoc and Lactobacillus were found to present the highest similarities. The gene most frequently absent from a collection of 34 strains and the sequences annotated in the NCBI database was trxA1. Moreover, phylogenetic analysis suggested that this gene was horizontally transferred from Lactobacillus to O. oeni. Strain-dependent expression profiles were determined in rich and in wine-like media. General over-expression was detected after inoculation into wine-like medium, with trxA3 being the most highly expressed gene. The increased transcriptional levels of the thioredoxin genes are indicative of the crucial role of this system in the O. oeni response to wine harsh conditions.


Asunto(s)
Expresión Génica , Genes Bacterianos , Oenococcus/genética , Tiorredoxinas/genética , Fermentación , Genoma Bacteriano , Lactobacillus/genética , Oxidación-Reducción , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Vino/análisis
7.
Food Microbiol ; 51: 87-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26187832

RESUMEN

The correct development of malolactic fermentation depends on the capacity of Oenococcus oeni to survive under harsh wine conditions. The presence of ethanol is one of the most stressful factors affecting O. oeni performance. In this study, the effect of ethanol addition (12% vol/vol) on O. oeni PSU-1 has been evaluated using a transcriptomic and proteomic approach. Transcriptomic analysis revealed that the main functional categories of the genes affected by ethanol were metabolite transport and cell wall and membrane biogenesis. It was also observed that some genes were over-expressed in response to ethanol stress (for example, the heat shock protein Hsp20 and a dipeptidase). Proteomic analysis showed that several proteins are affected by the presence of ethanol. Functions related to protein synthesis and stability are the main target of ethanol damage. In some cases the decrease in protein concentration could be due to the relocation of cytosolic proteins in the membrane, as a protective mechanism. The omic approach used to study the response of O. oeni to ethanol highlights the importance of the cell membrane in the global stress response and opens the door to future studies on this issue.


Asunto(s)
Etanol/farmacología , Perfilación de la Expresión Génica , Oenococcus/efectos de los fármacos , Oenococcus/genética , Proteómica , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Etanol/metabolismo , Fermentación , Oenococcus/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Vino
8.
Microb Biotechnol ; 17(1): e14302, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37387409

RESUMEN

The potential use of Torulaspora delbrueckii as a starter culture for wine alcoholic fermentation has become a subject of interest in oenological research. The use of this non-Saccharomyces yeast can modulate different wine attributes, such as aromatic substances, organic acids and phenolic compound compositions. Thus, the obtained wines are different from those fermented with Saccharomyces cerevisiae as the sole starter. Nevertheless, information about the possible effects of T. delbrueckii chemical modulation on subsequent malolactic fermentation is still not fully explained. In general, T. delbrueckii is related to a decrease in toxic compounds that negatively affect Oenococcus oeni and an increase in others that are described as stimulating compounds. In this work, we aimed to compile the changes described in studies using T. delbrueckii in wine that can have a potential effect on O. oeni and highlight those works that directly evaluated O. oeni performance in T. delbrueckii fermented wines.


Asunto(s)
Torulaspora , Vino , Fermentación , Vino/análisis , Saccharomyces cerevisiae , Fenoles
9.
Foods ; 13(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38254487

RESUMEN

Fermented beverages, particularly wines, exhibit variable concentrations of organic and phenolic acids, posing challenges in their accurate determination. Traditionally, enzymatic methods or chromatographic analyses, mainly high-performance liquid chromatography (HPLC), have been employed to quantify these compounds individually in the grape must or wine. However, chromatographic analyses face limitations due to the high sugar content in the grape must. Meanwhile, phenolic acids, found in higher quantities in red wines than in white wines, are typically analyzed using HPLC. This study presents a novel method for the quantification of organic acids (OAs), glycerol, and phenolic acids in grape musts and wines. The approach involves liquid-liquid extraction with ethyl acetate, followed by sample derivatization and analysis using gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) detection mode. The results indicated successful detection and quantification of all analyzed compounds without the need for sample dilution. However, our results showed that the method of adding external standards was more suitable for quantifying wine compounds, owing to the matrix effect. Furthermore, this method is promising for quantifying other metabolites present in wines, depending on their extractability with ethyl acetate. Fermented beverages, particularly wines, exhibit variable concentrations of organic and phenolic acids, posing challenges in their accurate determination. Traditionally, enzymatic methods or chromatographic analyses, mainly high-performance liquid chromatography (HPLC), have been employed to quantify these compounds individually in the grape must or wine. The approach of this proposed method involves (i) methoximation of wine compounds in a basic medium, (ii) acidification with HCl, (iii) liquid-liquid extraction with ethyl acetate, and (iv) silyl derivatization to analyze samples with gas chromatography-mass spectrometry (GC-MS) in ion monitoring detection mode (SIM). The results indicated successful detection and quantification of all analyzed compounds without the need for sample dilution. However, our results showed that the method of adding external standards was more suitable for quantifying wine compounds, owing to the matrix effect. Furthermore, this method is promising for quantifying other metabolites present in wines, depending on their extractability with ethyl acetate. In other words, the proposed method may be suitable for profiling (targeted) or fingerprinting (untargeted) strategies to quantify wine metabolites or to classify wines according to the type of winemaking process, grape, or fermentation.

10.
Food Res Int ; 179: 114027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342547

RESUMEN

Oenococcus oeni is the lactic acid bacteria most suited to carry out malolactic fermentation in wine, converting L-malic acid into L-lactic acid and carbon dioxide, thereby deacidifying wines. Indeed, wine is a harsh environment for microbial growth, partly because of its low pH. By metabolizing citrate, O. oeni maintains its homeostasis under acid conditions. Indeed, citrate consumption activates the proton motive force, helps to maintain intracellular pH, and enhances bacterial growth when it is co-metabolized with sugars. In addition, citrate metabolism is responsible for diacetyl production, an aromatic compound which bestows a buttery character to wine. However, an inhibitory effect of citrate on O. oeni growth at low pH has been highlighted in recent years. In order to understand how citrate metabolism can be linked to the acid tolerance of this bacterium, consumption of citrate was investigated in eleven O. oeni strains. In addition, malate and sugar consumptions were also monitored, as they can be impacted by citrate metabolism. This experiment highlighted the huge diversity of metabolisms between strains depending on their origin. It also showed the capacity of O. oeni to de novo metabolize certain end-products such as L-lactate and mannitol, a phenomenon never before demonstrated. It also enabled drawing hypotheses concerning the two positive effects that the slowing down of citrate metabolism could have on biomass production and malolactic fermentation occurring under low pH conditions.


Asunto(s)
Ácido Cítrico , Malatos , Oenococcus , Vino , Fermentación , Vino/análisis , Azúcares , Concentración de Iones de Hidrógeno
11.
Int J Food Microbiol ; 413: 110583, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38277869

RESUMEN

In the context of ecological transition, the use of wine by-products for industrial applications is a major challenge. Wine lees, the second wine by-product in terms of quantity, represent a source of nutrients that can be used for stimulating the growth of microorganisms. Here, white wine lees were used as a stimulating agent for the growth of wine lactic acid bacteria (LAB) and to promote wine malolactic fermentation (MLF) driven out by Oenococcus oeni. By adding freeze-dried wine lees to wines under different conditions - including different wine lees at different concentrations and different O. oeni strains at various initial populations - it was observed that wine lees can enhance the growth of LAB and reduce the duration of MLF. The chemical composition of wines was also evaluated, proving that wine lees do not compromise the quality of the wines. In addition, wine lees did not seem to promote the growth of spoilage microorganisms like as Brettanomyces bruxellensis. Altogether, this work reports the possibility of recovering the lees of white wine to obtain a product favoring the MLF of red wines. More general, we propose a recycling strategy of wine by-products to obtain new products for winemaking.


Asunto(s)
Lactobacillales , Oenococcus , Vino , Vino/microbiología , Fermentación , Malatos
12.
Food Microbiol ; 33(1): 107-13, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23122508

RESUMEN

The accumulation of citrulline and ornithine in wine or beer as a result of the arginine catabolism of some lactic acid bacteria (LAB) species increases the risk of ethyl carbamate and putrescine formation, respectively. Several LAB species, which are found as spoilage bacteria in alcoholic beverages, have been reported to be arginine degrading. This study evaluates the effect of ethanol content and low pH on the excretion of citrulline and ornithine by two strains belonging to the potential contaminant species Lactobacillus brevis and Pediococcus pentosaceus. In the conditions that most affected cell viability, arginine consumption per cell increased noticeably, indicating that arginine utilization may be a stress responsive mechanism. L. brevis showed a higher accumulation of ornithine in the media than P. pentosaceus. In the presence of ethanol, a higher expression of the arcC gene was found in P. pentosaceus, which resulted in a lower excretion of citrulline and ornithine than in L. brevis. This suggests that L. brevis is more likely to produce these amino acids, which are precursors of ethyl carbamate and putrescine.


Asunto(s)
Proteínas Bacterianas/genética , Citrulina/metabolismo , Etanol/metabolismo , Regulación Enzimológica de la Expresión Génica , Levilactobacillus brevis/metabolismo , Ornitina/metabolismo , Pediococcus/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Levilactobacillus brevis/enzimología , Levilactobacillus brevis/genética , Pediococcus/enzimología , Pediococcus/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Vino/análisis , Vino/microbiología
13.
Int J Food Microbiol ; 404: 110367, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37597274

RESUMEN

Progress in oenological biotechnology now makes it possible to control alcoholic (AF) and malolactic (MLF) fermentation processes for the production of wines. Key factors in controlling these processes and enhancing wine quality include the use of selected strains of non-Saccharomyces species, Saccharomyces cerevisiae, and Oenococcus oeni, as well as the method of inoculation (co-inoculation or sequential) and the timing of inoculation. In the present work, we investigated the effects of different inoculation strategies of two Torulaspora delbrueckii (Td-V and Td-P) strains followed by S. cerevisiae. Times (two, four, and six days) and types (co-inoculation and sequential) of inoculation were evaluated on the AF of a synthetic grape must. Furthermore, this synthetic medium was optimized by adding linoleic acid and ß-sitosterol to simulate the natural grape must and facilitate reproducible results in potential assays. Subsequently, the wines obtained were inoculated with two strains of Oenococcus oeni to carry out MLF. Parameters after AF were analysed to observe the impact of wine composition on the MLF performance. The results showed that the optimization of the must through the addition of linoleic acid and ß-sitosterol significantly enhanced MLF performance. This suggests that these lipids can positively impact the metabolism of O. oeni, leading to improved MLF efficiency. Furthermore, we observed that a 4-day contact period with T. delbrueckii leads to the most efficient MLF process and contributed to the modification of certain AF metabolites, such as the reduction of ethanol and acetic acid, as well as an increase in available nitrogen. The combination of Td-P with Oo-VP41 for 4 or 6 days during MLF showed that it could be the optimal option in terms of efficiency. By evaluating different T. delbrueckii inoculation strategies, optimizing the synthetic medium and studying the effects on wine composition, we aimed to gain insights into the relationship between AF conditions and subsequent MLF performance. Through this study, we aim to provide valuable insights for winemakers and researchers in the field of wine production and will contribute to a better understanding of the complex interactions between these species in the fermentation process.


Asunto(s)
Torulaspora , Vitis , Fermentación , Saccharomyces cerevisiae , Ácido Linoleico , Medios de Cultivo
14.
Front Microbiol ; 14: 1283220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249489

RESUMEN

Lactic acid bacteria (LAB) are Gram positive bacteria frequently used in the food industry for fermentation, mainly transformation of carbohydrates into lactic acid. In addition, these bacteria also have the capacity to metabolize citrate, an organic acid commonly found in food products. Its fermentation leads to the production of 4-carbon compounds such as diacetyl, resulting in a buttery flavor desired in dairy products. Citrate metabolism is known to have several beneficial effects on LAB physiology. Nevertheless, a controversial effect of citrate has been described on the acid tolerance of the wine bacterium Oenococcus oeni. This observation raises questions about the effect of citrate on the capacity of O. oeni to conduct malolactic fermentation in highly acidic wines. This review aims to summarize the current understanding of citrate metabolism in LAB, with a focus on the wine bacterium O. oeni. Metabolism with the related enzymes is detailed, as are the involved genes organized in cit loci. The known systems of cit locus expression regulation are also described. Finally, the beneficial effects of citrate catabolism on LAB physiology are reported and the negative impact observed in O. oeni is discussed.

15.
Res Microbiol ; 174(5): 104048, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36893970

RESUMEN

Oenococcus oeni is the main lactic acid bacterium associated with malolactic fermentation (MLF) of wines. MLF plays an important role in determining the final quality of wines. Nevertheless, due to the stressful conditions inherent to wine and especially acidity, MLF may be delayed. This study aimed to explore by adaptive evolution improvements in the acid tolerance of starters but also to gain a better understanding of the mechanisms involved in adaptation toward acidity. Four independent populations of the O. oeni ATCC BAA-1163 strain were propagated (approximately 560 generations) in a temporally varying environment, consisting in a gradual pH decrease from pH 5.3 to pH 2.9. Whole genome sequence comparison of these populations revealed that more than 45% of the substituted mutations occurred in only five loci for the evolved populations. One of these five fixed mutations affects mae, the first gene of the citrate operon. When grown in an acidic medium supplemented with citrate, a significantly higher bacterial biomass was produced with the evolved populations compared to the parental strain. Furthermore, the evolved populations slowed down their citrate consumption at low pH without impacting malolactic performance.


Asunto(s)
Ácido Cítrico , Vino , Malatos/análisis , Vino/análisis , Vino/microbiología , Fermentación , Citratos
16.
Food Microbiol ; 31(1): 1-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22475936

RESUMEN

Table olives are one of the main fermented vegetables in the world. Olives can be processed as treated or natural. Both have to be fermented but treated green olives have to undergo an alkaline treatment before they are placed in brine to start their fermentation. It has been generally established that lactic acid bacteria (LAB) are responsible for the fermentation of treated olives. However, LAB and yeasts compete for the fermentation of natural olives. Yeasts play a minor role in some cases, contributing to the flavour and aroma of table olives and in LAB development. The main microbial genus isolated in table olives is Lactobacillus. Other genera of LAB have also been isolated but to a lesser extent. Lactobacillus plantarum and Lactobacillus pentosus are the predominant species in most fermentations. Factors influencing the correct development of fermentation and LAB, such as pH, temperature, the amount of NaCl, the polyphenol content or the availability of nutrients are also reviewed. Finally, current research topics on LAB from table olives are reviewed, such as using starters, methods of detection and identification of LAB, their production of bacteriocins, and the possibility of using table olives as probiotics.


Asunto(s)
Fermentación , Manipulación de Alimentos/métodos , Microbiología de Alimentos , Lactobacillus/aislamiento & purificación , Olea/microbiología , Concentración de Iones de Hidrógeno , Lactobacillus/clasificación , Lactobacillus/crecimiento & desarrollo , Polifenoles/análisis , Probióticos/metabolismo , Cloruro de Sodio Dietético/análisis , Gusto , Temperatura , Verduras/química , Levaduras/crecimiento & desarrollo , Levaduras/aislamiento & purificación
17.
Int J Food Microbiol ; 362: 109490, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-34844030

RESUMEN

Oenococcus oeni is the main agent responsible for malolactic fermentation (MLF) in wine. This usually takes place in red wines after alcoholic fermentation (AF) carried out by Saccharomyces cerevisiae. In recent years, there is an increasing interest in using non-Saccharomyces yeast, usually in combination with S. cerevisiae, to improve wine quality. Current studies report a stimulatory effect of non-Saccharomyces on MLF, generally related to a decrease in the inhibitor compounds found in wine. In this work, we followed a comparative multi-omics approach, including transcriptomic and proteomic analysis, to study the molecular adaptation of O. oeni in wines fermented with Torulaspora delbrueckii and Metschnikowia pulcherrima, two of the most frequently used non-Saccharomyces, in sequential inoculation with S. cerevisiae. We compared the results to the adaptation of O. oeni in S. cerevisiae wine to determine the main changes arising from the use of non-Saccharomyces. The duration of MLF was shortened when using non-Saccharomyces, to half the time with T. delbrueckii and to a quarter with M. pulcherrima. In this work, we observed for the first time how O. oeni responds at molecular level to the changes brought about by non-Saccharomyces. We showed a differential adaptation of O. oeni in the wines studied. In this regard, the main molecular functions affected were amino acid and carbohydrate transport and metabolism, from which peptide metabolism appeared as a key feature under wine-like conditions. We also showed that the abundance of Hsp20, a well-known stress protein, depended on the duration time. Thus, the use of non-Saccharomyces reduced the abundance of Hsp20, which could mean a less stressful wine-like condition for O. oeni.


Asunto(s)
Oenococcus , Vino , Fermentación , Malatos , Oenococcus/genética , Proteómica , Saccharomyces cerevisiae , Vino/análisis
18.
Int Microbiol ; 14(4): 225-33, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22569760

RESUMEN

Wine can contain trace amounts of ethyl carbamate (EC), a carcinogen formed when ethanol reacts with carbamyl compounds such as citrulline. EC is produced from arginine by lactic acid bacteria (LAB), e.g., Lactobacillus and Pediococcus. Although the amounts of EC in wine are usually negligible, over the last few years there has been a slight but steady increase, as climate change has increased temperatures and alcohol levels have become proportionately higher, both of which favor EC formation. In this study, resting cells of LAB were used to evaluate the effects of ethanol, glucose, malic acid, and low pH on the ability of non-oenococcal strains of these bacteria to degrade arginine and excrete citrulline. Malic acid was found to clearly inhibit arginine consumption in all strains. The relation between citrulline produced and arginine consumed was clearly higher in the presence of ethanol (10-12%) and at low pH (3.0), which is consistent with both the decreased amount of ornithine produced from arginine and the reduction in arginine degradation. In L. brevis and L. buchneri strains isolated from wine and beer, respectively, the synthesis of citrulline from arginine was highest.


Asunto(s)
Arginina/metabolismo , Citrulina/metabolismo , Lactobacillus/metabolismo , Pediococcus/metabolismo , Vino/microbiología , Cerveza/microbiología , Etanol/metabolismo , Concentración de Iones de Hidrógeno , Malatos/metabolismo
19.
Food Microbiol ; 28(7): 1339-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21839383

RESUMEN

This research studied the influence of sodium chloride on bacteriocin activity of table olives' strain Lactobacillus pentosus B96. The strain was cultured in MRS under different NaCl concentrations (0, 4, 6 and 8%, in w/v). In MRS, maximum bacteriocin activity was achieved 9 h later. A medium containing 4 or 6% NaCl (w/v) increased the total bioactivity of the strain and an 8% NaCl reduced it. Real-time PCR was used to monitor the genetic expression of the bacteriocin genes plnA, plnB, plnC, plnE/F, plnJ, plnK, plnN and plantaricin S. Cultured in MRS, plantaricin S reached its maximum expression during the lag phase while plnE/F expresses during the exponential phase. The presence of sodium chloride in the medium moved the maximum expression of plantaricin S to the stationary phase, independently of the concentration. 4% (w/v) of NaCl didn't affect the expression pattern of plnE/F while promotes the expression of plnN during both the lag and the exponential phases. More sodium chloride, 6% (w/v) maintained the expression of plnN in the pag phase but not in the exponential and moved plnE/F expression to the stationary phase. Plantaricin S, plnE/F and plnN over-expressed during the stationary phase in the higher sodium chloride concentration assayed, 8% (w/v). The relative expression level of plsA was 1000-fold higher than that of the plnE/F and plnN genes and even the ldhD constitutive gene used. Under our conditions, expression of plnA, plnB, plnC, plnJ and plnK genes was not observed.


Asunto(s)
Bacteriocinas/genética , Lactobacillus/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Food Microbiol ; 28(8): 1514-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21925038

RESUMEN

Near one hundred isolates of Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus plantarum from table olives were studied. Strains were genotyped by rep-PCR. Although the technique failed to differentiate some isolates at the species level, it proved a robust and easy procedure that could be useful for distinguishing between related strains of L. paraplantarum, L. pentosus and L. plantarum from a large pool of unrelated strains of these species. A PCR-based screening revealed the presence of the plantaricin encoding genes plnA, plnB, plnC, plnD, plnE/F, plnF, plnI, plnJ, plnK, plnG and plnN in most isolates of the three species. Sequences of bacteriocin genes present in L. paraplantarum and L. pentosus were homologous to L. plantarum genes. Through a discriminating analysis of the bacteriocin gene profiles, it was possible to establish a relationship between the origin of isolation and the LAB isolates, regardless of species.


Asunto(s)
Bacteriocinas/genética , Lactobacillus/aislamiento & purificación , Lactobacillus/metabolismo , Olea/microbiología , Bacteriocinas/metabolismo , Fermentación , Lactobacillus/clasificación , Lactobacillus/genética , Datos de Secuencia Molecular , Olea/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA