Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 29(61): e202302137, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37553294

RESUMEN

Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 µs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 µs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.

2.
Chemistry ; 27(17): 5521-5535, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33400310

RESUMEN

Perylenebisimide (PBI)-anthracene (AN) donor-acceptor dyads/triad were prepared to investigate spin-orbit charge-transfer intersystem crossing (SOCT-ISC). Molecular conformation was controlled by connecting PBI units to the 2- or 9-position of the AN moiety. Steady-state, time-resolved transient absorption and emission spectroscopy revealed that chromophore orientation, electronic coupling, and dihedral angle between donor and acceptor exert a significant effect on the photophysical property. The dyad PBI-9-AN with orthogonal geometry shows weak ground-state coupling and efficient intersystem crossing (ISC, ΦΔ =86 %) as compared with PBI-2-AN (ΦΔ =57 %), which has a more coplanar geometry. By nanosecond transient absorption spectroscopy, a long-lived PBI localized triplet state was observed (τT =139 µs). Time-resolved EPR spectroscopy demonstrated that the electron spin polarization pattern of the triplet state is sensitive to the geometry and number of AN units attached to PBI. Reversible and stepwise generation of near-IR-absorbing PBI radical anion (PBI-⋅ ) and dianion (PBI2- ) was observed on photoexcitation in the presence of triethanolamine, and it was confirmed that selective photoexcitation at the near-IR absorption bands of PBI.- is unable to produce PBI2- .

3.
Chemistry ; 26(65): 14912-14918, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32567099

RESUMEN

Zinc(II) bis(dipyrrin) complexes, which feature intense visible absorption and efficient symmetry breaking charge transfer (SBCT) are outstanding candidates for photovoltaics but their short lived triplet states limit applications in several areas. Herein we demonstrate that triplet excited state dynamics of bis(dipyrrin) complexes can be efficiently tuned by attaching electron donating aryl moieties at the 5,5'-position of the complexes. For the first time, a long lived triplet excited state (τT =296 µs) along with efficient ISC ability (ΦΔ =71 %) was observed for zinc(II) bis(dipyrrin) complexes, formed via SBCT. The results revealed that molecular geometry and energy gap between the charge transfer (CT) state and triplet energy levels strongly control the triplet excited state properties of the complexes. An efficient triplet-triplet annihilation upconversion system was devised for the first time using a SBCT architecture as triplet photosensitizer, reaching a high upconversion quantum yield of 6.2 %. Our findings provide a blueprint for the development of triplet photosensitizers based on earth abundant metal complexes with long lived triplet state for revolutionary photochemical applications.

4.
Chem Commun (Camb) ; 60(17): 2385-2388, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38321968

RESUMEN

We present a red light-activated zincII bis(dipyrrin) symmetry breaking charge transfer (SBCT) architecture, showing a large molar absorption coefficient (ε = 15.4 × 104 M-1 cm-1), high reactive singlet oxygen generation efficiency (ΦΔ ≈ 0.8) and long-lived triplet state (τT = 150 µs) compared to the donor-acceptor analogue dipyrrin-BF2 complex, highlighting the superiority of the SBCT approach. For the first time, we demonstrated the potential of a SBCT scaffold in red-light-induced methyl methacrylate (MMA) polymerization, using a dual photocatalyst excitation approach.

5.
J Phys Chem B ; 125(32): 9317-9332, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34378387

RESUMEN

Heavy atom-free triplet photosensitizers (PSs) are particularly of interest concerning both fundamental photochemistry study and practical applications. However, achieving efficient intersystem crossing (ISC) in planar heavy atom-free aromatic organic compounds is challenging. Herein, we demonstrate that two perylenebisimide (PBI) derivatives with anthryl and carbazole moieties fused at the bay position, showing twisted π-conjugation frameworks and red-shifted UV-vis absorption as compared to the native PBI chromophore (by 75-1610 cm-1), possess efficient ISC (singlet oxygen quantum yield: ΦΔ = 85%) and a long-lived triplet excited state (τT = 382 µs in fluid solution and τT = 4.28 ms in solid polymer film). Femtosecond transient absorption revealed ultrafast intramolecular charge-transfer (ICT) process in the twisted PBI derivatives (0.9 ps), and the ISC takes 3.7 ns. Pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra indicate that the triplet-state wave function of the twisted PBIs is mainly confined on the PBI core, demonstrated by the zero-field-splitting D parameter. Accordingly, the twisted derivatives have higher T1 energy (ET1 = 1.48-1.56 eV) as compared to the native PBI chromophore (1.20 eV), which is an advantage for the application of the derivatives as triplet PSs. Theoretical computation of the Franck-Condon density of states, based on excited-state dynamics methods, shows that the efficient ISC in the twisted PBI derivatives is due to the increased spin-orbit coupling matrix elements for the S1-T1 and S1-T2 states [spin-orbit coupling matrix element (SOCME): 0.11-0.44 cm-1. SOCME is zero for native PBI], as well as the Herzberg-Teller vibronic coupling. For the planar benzoPBI, the moderate ISC is due to S1 → T2 transition (SOCME: 0.03 cm-1. The two states share a similar energy, ca. 2.5 eV).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA