Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Phys Chem Chem Phys ; 24(22): 13461-13473, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616020

RESUMEN

X-Ray and related spectroscopies are powerful probes of atomic, vibrational, and electronic structure. In order to unlock the full potential of such experimental techniques, accurate and efficient theoretical and computational approaches are essential. Here we review the status of a variety of first-principles and nearly first principles techniques for X-ray spectroscopies such as X-ray absorption, X-ray emission, and X-ray photoemission, with a focus on Green's function based methods. In particular, we describe the current state of multiple scattering Green's function techniques available in the FEFF10 code and cumulant Green's function techniques for including the effects of many-body electronic excitations. Illustrative examples are shown for a variety of materials and compared with other theoretical and experimental results.

2.
J Chem Phys ; 157(4): 044101, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35922363

RESUMEN

Newly developed coupled-cluster (CC) methods enable simulations of ionization potentials and spectral functions of molecular systems in a wide range of energy scales ranging from core-binding to valence. This paper discusses the results obtained with the real-time equation-of-motion CC cumulant (RT-EOM-CC) approach and CC Green's function (CCGF) approaches in applications to the water and water dimer molecules. We compare the ionization potentials obtained with these methods for the valence region with the results obtained with the coupled-cluster with singles, doubles, and perturbative triples formulation as a difference of energies for N and N - 1 electron systems. All methods show good agreement with each other. They also agree well with the experiment with errors usually below 0.1 eV for the ionization potentials. We also analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods employing single and double excitations, as a function of the monomer OH bond length and the proton transfer coordinate in the dimer. Finally, we analyze the impact of the basis set effects on the quality of calculated ionization potentials and find that the basis set effects are less pronounced for the augmented-type sets.

3.
J Phys Chem A ; 123(35): 7619-7636, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31386367

RESUMEN

We demonstrate that the possibility of monitoring relative photoionization cross sections over a large photon energy range allows us to study and disentangle shake processes and intramolecular inelastic scattering effects. In this gas-phase study, relative intensities of the carbon 1s photoelectron lines from chemically inequivalent carbon atoms in the same molecule have been measured as a function of the incident photon energy in the range of 300-6000 eV. We present relative cross sections for the chemically shifted carbon 1s lines in the photoelectron spectra of ethyl trifluoroacetate (the "ESCA" molecule). The results are compared with those of methyl trifluoroacetate and S-ethyl trifluorothioacetate as well as a series of chloro-substituted ethanes and 2-butyne. In the soft X-ray energy range, the cross sections show an extended X-ray absorption fine structure type of wiggles, as was previously observed for a series of chloroethanes. The oscillations are damped in the hard X-ray energy range, but deviations of cross-section ratios from stoichiometry persist, even at high energies. The current findings are supported by theoretical calculations based on a multiple scattering model. The use of soft and tender X-rays provides a more complete picture of the dominant processes accompanying photoionization. Such processes reduce the main photoelectron line intensities by 20-60%. Using both energy ranges enabled us to discern the process of intramolecular inelastic scattering of the outgoing electron, whose significance is otherwise difficult to assess for isolated molecules. This effect relates to the notion of the inelastic mean free path commonly used in photoemission studies of clusters and condensed matter.

4.
Chem Rev ; 116(13): 7551-69, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27244473

RESUMEN

Here we present an overview of recent developments of X-ray and electron spectroscopy to probe water at different temperatures. Photon-induced ionization followed by detection of electrons from either the O 1s level or the valence band is the basis of photoelectron spectroscopy. Excitation between the O 1s and the unoccupied states or occupied states is utilized in X-ray absorption and X-ray emission spectroscopies. These techniques probe the electronic structure of the liquid phase and show sensitivity to the local hydrogen-bonding structure. Both experimental aspects related to the measurements and theoretical simulations to assist in the interpretation are discussed in detail. Different model systems are presented such as the different bulk phases of ice and various adsorbed monolayer structures on metal surfaces.

5.
Phys Chem Chem Phys ; 25(11): 7572-7573, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36861388
6.
J Am Chem Soc ; 137(40): 12815-34, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26352328

RESUMEN

First principle calculations of extended X-ray absorption fine structure (EXAFS) data have seen widespread use in bioinorganic chemistry, perhaps most notably for modeling the Mn4Ca site in the oxygen evolving complex (OEC) of photosystem II (PSII). The logic implied by the calculations rests on the assumption that it is possible to a priori predict an accurate EXAFS spectrum provided that the underlying geometric structure is correct. The present study investigates the extent to which this is possible using state of the art EXAFS theory. The FEFF program is used to evaluate the ability of a multiple scattering-based approach to directly calculate the EXAFS spectrum of crystallographically defined model complexes. The results of these parameter free predictions are compared with the more traditional approach of fitting FEFF calculated spectra to experimental data. A series of seven crystallographically characterized Mn monomers and dimers is used as a test set. The largest deviations between the FEFF calculated EXAFS spectra and the experimental EXAFS spectra arise from the amplitudes. The amplitude errors result from a combination of errors in calculated S0(2) and Debye-Waller values as well as uncertainties in background subtraction. Additional errors may be attributed to structural parameters, particularly in cases where reliable high-resolution crystal structures are not available. Based on these investigations, the strengths and weaknesses of using first-principle EXAFS calculations as a predictive tool are discussed. We demonstrate that a range of DFT optimized structures of the OEC may all be considered consistent with experimental EXAFS data and that caution must be exercised when using EXAFS data to obtain topological arrangements of complex clusters.


Asunto(s)
Modelos Químicos , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Análisis Espectral/métodos
7.
J Synchrotron Radiat ; 22(4): 1042-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26134809

RESUMEN

Calculations are presented of the electronic structure and X-ray spectra of materials with correlated d- and f-electron states based on the Hubbard model, a real-space multiple-scattering formalism and a rotationally invariant local density approximation. Values of the Hubbard parameter are calculated ab initio using the constrained random-phase approximation. The combination of the real-space Green's function with Hubbard model corrections provides an efficient approach to describe localized correlated electron states in these systems, and their effect on core-level X-ray spectra. Results are presented for the projected density of states and X-ray absorption spectra for transition metal- and lanthanide-oxides. Results are found to be in good agreement with experiment.

8.
Inorg Chem ; 54(1): 174-82, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25485552

RESUMEN

Dicesium uranyl tetrachloride (Cs2UO2Cl4) has been a model compound for experimental and theoretical studies of electronic structure of U(VI) in the form of UO2(2+) (uranyl ion) for decades. We have obtained angle-resolved electronic structure information for oriented Cs2UO2Cl4 crystal, specifically relative energies of 5f and 6d valence orbitals probed with extraordinary energy resolution by polarization dependent high energy resolution X-ray absorption near edge structure (PD-HR-XANES) and compare these with predictions from quantum chemical Amsterdam density functional theory (ADF) and ab initio real space multiple-scattering Green's function based FEFF codes. The obtained results have fundamental value but also demonstrate an experimental approach, which offers great potential to benchmark and drive improvement in theoretical calculations of electronic structures of actinide elements.

9.
J Synchrotron Radiat ; 21(Pt 1): 136-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24365928

RESUMEN

Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated. The local environment of Sr(2+) cations in biological apatites present in pathological and physiological calcifications in patients without such Sr-based drugs has been assessed. In this investigation, X-ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using the ab initio FEFF9 X-ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr(2+) cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr(2+) versus apatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr(2+) cations will be localized into the apatite network.


Asunto(s)
Apatitas/química , Espectrometría por Rayos X/métodos , Estroncio/análisis , Espectroscopía de Absorción de Rayos X/métodos , Calcificación Fisiológica , Calcinosis , Humanos
10.
Chemphyschem ; 15(8): 1569-72, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24634366

RESUMEN

Determination of the factors that affect the d-band center of catalysts is required to explain their catalytic properties. Resonant inelastic X-ray scattering (RIXS) enables direct imaging of electronic transitions in the d-band of Pt catalysts in real time and in realistic environmental conditions. Through a combination of in situ, temperature-resolved RIXS measurements and theoretical simulations we isolated and quantified the effects of bond-length disorder and adsorbate coverage (CO and H2) on the d-band center of 1.25 nm size Pt catalysts supported on carbon. We found that the decrease in adsorbate coverage at elevated temperatures is responsible for the d band shifts towards higher energies relative to the Fermi level, whereas the effect of the increase in bond-length disorder on the d-band center is negligible. Although these results were obtained for a specific case of non-interacting support and weak temperature dependence of the metal-metal bond length in a model catalyst, this work can be extended to a broad range of real catalysts.

11.
Nanotechnology ; 25(12): 125705, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24577191

RESUMEN

Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.


Asunto(s)
ADN/química , Grafito/química , Nanotecnología/instrumentación , ADN de Cadena Simple/química , Diseño de Equipo , Nanoporos/ultraestructura , Relación Señal-Ruido
12.
J Chem Theory Comput ; 20(5): 1796-1801, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422509

RESUMEN

Photoelectron spectroscopy (PES) is a standard experimental method for material characterization, but its interpretation can be hampered by its reliance on standard materials. To facilitate the study of unknown systems, theoretical methods are desirable. Here, we present a real-time equation-of-motion coupled cluster (RT-EOM-CC) approach for valence PES, extending our core-level development. We demonstrate that RT-EOM-CC yields ionization energies and spectral functions in good agreement with experimental and CI-based results, even for some more correlated cases.

13.
J Chem Phys ; 138(23): 234310, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23802963

RESUMEN

Carbon 1s photoelectron spectra for 2-butyne (CH3C≡CCH3) measured in the photon energy range from threshold to 150 eV above threshold show oscillations in the intensity ratio C2,3/C1,4. Similar oscillations have been seen in chloroethanes, where the effect has been attributed to EXAFS-type scattering from the substituent chlorine atoms. In 2-butyne, however, there is no high-Z atom to provide a scattering center and, hence, oscillations of the magnitude observed are surprising. The results have been analyzed in terms of two different theoretical models: a density-functional model with B-spline atom-centered functions to represent the continuum electrons and a multiple-scattering model using muffin-tin potentials to represent the scattering centers. Both methods give a reasonable description of the energy dependence of the intensity ratios.


Asunto(s)
Carbono/química , Electrones , Iones/química , Espectroscopía de Fotoelectrones , Fotones , Dispersión de Radiación
14.
Nano Lett ; 12(2): 927-31, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22257137

RESUMEN

We calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules. Thus the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS.


Asunto(s)
ADN/química , Electrones , Grafito/química , Microscopía de Túnel de Rastreo , Nucleótidos/química
15.
J Chem Theory Comput ; 19(8): 2248-2257, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096369

RESUMEN

We report the implementation of the real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green's function method [ J. Chem. Phys. 2020, 152, 174113] within the Tensor Algebra for Many-body Methods (TAMM) infrastructure. TAMM is a massively parallel heterogeneous tensor library designed for utilizing forthcoming exascale computing resources. The two-body electron repulsion matrix elements are Cholesky-decomposed, and we imposed spin-explicit forms of the various operators when evaluating the tensor contractions. Unlike our previous real algebra Tensor Contraction Engine (TCE) implementation, the TAMM implementation supports fully complex algebra. The RT-EOM-CC singles (S) and doubles (D) time-dependent amplitudes are propagated using a first-order Adams-Moulton method. This new implementation shows excellent scalability tested up to 500 GPUs using the Zn-porphyrin molecule with 655 basis functions, with parallel efficiencies above 90% up to 400 GPUs. The TAMM RT-EOM-CCSD was used to study core photoemission spectra in the formaldehyde and ethyl trifluoroacetate (ESCA) molecules. Simulations of the latter involve as many as 71 occupied and 649 virtual orbitals. The relative quasiparticle ionization energies and overall spectral functions agree well with available experimental results.

16.
J Chem Theory Comput ; 19(20): 7077-7096, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37458314

RESUMEN

This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.

17.
Phys Rev Lett ; 107(16): 166401, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22107408

RESUMEN

The experimental valence band photoemission spectrum of semiconductors exhibits multiple satellites that cannot be described by the GW approximation for the self-energy in the framework of many-body perturbation theory. Taking silicon as a prototypical example, we compare experimental high energy photoemission spectra with GW calculations and analyze the origin of the GW failure. We then propose an approximation to the functional differential equation that determines the exact one-body Green's function, whose solution has an exponential form. This yields a calculated spectrum, including cross sections, secondary electrons, and an estimate for extrinsic and interference effects, in excellent agreement with experiment. Our result can be recast as a dynamical vertex correction beyond GW, giving hints for further developments.

18.
J Phys Chem A ; 115(15): 3243-50, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21452848

RESUMEN

Nonresonant X-ray emission spectroscopy was used to compare the nitrogen-rich compounds ammonium nitrate, trinitrotoluene, and cyclotrimethylene-trinitramine. They are representative of crystalline and molecular structures of special importance in industrial and military applications. The spectral signature of each substance was analyzed and correlated with features in the electronic structure of the systems. This analysis was accomplished by means of theoretical simulations of the emission spectra and a detailed examination of the molecular orbitals and densities of states. We find that the two theoretical methods used (frozen-orbital density functional theory and real-space Green's function simulations) account semiquantitatively for the observed spectra and are able to predict features arising from distinct chemical complexes. A comparison of the calculations and the data provides insight into the electronic contributions of specific molecular orbitals, as well as the features due to bandlike behavior. With some additional refinements, these methods could be used as an alternative to reference compounds.


Asunto(s)
Nitratos/química , Triazinas/química , Trinitrotolueno/química , Espectrometría por Rayos X
19.
Sci Data ; 8(1): 153, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117266

RESUMEN

The L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow. The data is disseminated through the Materials Project and addresses a critical need for L-edge XANES spectra among the research community.

20.
Phys Chem Chem Phys ; 12(21): 5503-13, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20445945

RESUMEN

We briefly review our implementation of the real-space Green's function (RSGF) approach for calculations of X-ray spectra, focusing on recently developed parameter free models for dominant many-body effects. Although the RSGF approach has been widely used both for near edge (XANES) and extended (EXAFS) ranges, previous implementations relied on semi-phenomenological methods, e.g., the plasmon-pole model for the self-energy, the final-state rule for screened core hole effects, and the correlated Debye model for vibrational damping. Here we describe how these approximations can be replaced by efficient ab initio models including a many-pole model of the self-energy, inelastic losses and multiple-electron excitations; a linear response approach for the core hole; and a Lanczos approach for Debye-Waller effects. We also discuss the implementation of these models and software improvements within the FEFF9 code, together with a number of examples.


Asunto(s)
Espectroscopía de Absorción de Rayos X , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA