Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Euro Surveill ; 29(23)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847119

RESUMEN

BackgroundThe COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.AimWe discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.MethodsThe SARSeq pipeline was set up as a collaboration between private and public clinical diagnostic laboratories, a public health agency, and an academic institution. Representative SARS-CoV-2 positive specimens from each of the nine Austrian provinces were obtained from SARS-CoV-2 testing laboratories and processed centrally in an academic setting for S-gene sequencing and analysis.ResultsSARS-CoV-2 sequences from up to 2,880 cases weekly resulted in 222,784 characterised case samples in January 2021-March 2023. Consequently, Austria delivered the fourth densest genomic surveillance worldwide in a very resource-efficient manner. While most SARS-CoV-2 variants during the study showed comparable kinetic behaviour in all of Austria, some, like Beta, had a more focused spread. This highlighted multifaceted aspects of local population-level acquired immunity. The nationwide surveillance system enabled reliable nowcasting. Measured early growth kinetics of variants were predictive of later incidence peaks.ConclusionWith low automation, labour, and cost requirements, SARSeq is adaptable to monitor other pathogens and advantageous even for resource-limited countries. This multiplexed genomic surveillance system has potential as a rapid response tool for future emerging threats.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , Humanos , Austria/epidemiología , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/virología , COVID-19/diagnóstico , Mutación , Genómica/métodos , Pandemias , Evolución Molecular , Secuenciación Completa del Genoma/métodos
2.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026748

RESUMEN

Targeted protein degradation (TPD) modulates protein function beyond inhibition of enzyme activity or protein-protein interactions. Most degraders function by proximity induction, and directly bridge an E3 ligase with the target to be degraded. However, many proteins might not be addressable via proximity-based degraders, and other challenges, such as resistance acquisition, exist. Here, we identified pseudo-natural products derived from (-)-myrtanol, termed iDegs, that inhibit and induce degradation of the immunomodulatory enzyme indoleamine-2,3-dioxygenase 1 (IDO1) by a distinct mechanism. iDegs induce a unique conformational change and, thereby, boost IDO1 ubiquitination and degradation by the cullin-RING E3 ligase CRL2KLHDC3, which we identified to also mediate native IDO1 degradation. Therefore, iDegs supercharge the native proteolytic pathway of IDO1, rendering this mechanism of action distinct from traditional degrader approaches involving proteolysis-targeting chimeras (PROTACs) or molecular-glue degraders (MGDs). In contrast to clinically explored IDO1 inhibitors, iDegs reduce formation of kynurenine by both inhibition and induced degradation of the enzyme and should also modulate non-enzymatic functions of IDO1. This unique mechanism of action may open up new therapeutic opportunities for the treatment of cancer beyond classical inhibition of IDO1.

3.
Photochem Photobiol ; 98(6): 1255-1263, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35737849

RESUMEN

The supramolecular dimerization of a ruthenium polypyridyl precursor of a well-developed family of hydrogen-evolving photocatalysts via π-π interactions of the polyheteroaromatic bridging ligand was quantified with concentration-dependent 1 H-NMR spectroscopy. The data sets were analyzed with different calculation and fit methods. A comparison between the results of direct calculation and linear and nonlinear approaches showed that the application of a global nonlinear fit procedure yields the best results. The presented methods are also applicable for dimerization processes in the solution of other molecular moieties.


Asunto(s)
Fármacos Fotosensibilizantes , Rutenio , Rutenio/química , Espectroscopía de Resonancia Magnética/métodos , Ligandos , Dimerización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA