Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Acc Chem Res ; 57(1): 59-69, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103045

RESUMEN

ConspectusPreparing and manipulating pure magnetic states in molecular systems are the key initial requirements for harnessing the power of synthetic chemistry to drive practical quantum sensing and computing technologies. One route for achieving the requisite higher spin states in organic systems exploits the phenomenon of singlet fission, which produces pairs of triplet excited states from initially photoexcited singlets in molecular assemblies with multiple chromophores. The resulting spin states are characterized by total spin (quintet, triplet, or singlet) and its projection onto a specified molecular or magnetic field axis. These excited states are typically highly polarized but exhibit an impure spin population pattern. Herein, we report the prediction and experimental verification of molecular design rules that drive the population of a single pure magnetic state and describe the progress toward its experimental realization.A vital feature of this work is the close partnership among theory, chemical synthesis, and spectroscopy. We begin by presenting our theoretical framework for understanding spin manifold interconversion in singlet fission systems. This theory makes specific testable predictions about the intermolecular structure and orientation relative to an external magnetic field that should lead to pure magnetic state preparation and provides a powerful tool for interpreting magnetic spectra. We then test these predictions through detailed magnetic spectroscopy experiments on a series of new molecular architectures that meet one or more of the identified structural criteria. Many of these architectures rely on the synthesis of molecules with features unique to this effort: rigid bridges between chromophores in dimers, heteroacenes with tailored singlet/triplet-pair energy level matching, or side-group engineering to produce specific crystal structures. The spin evolution of these systems is revealed through our application and development of several magnetic resonance methods, each of which has different sensitivities and relevance in environments relevant to quantum applications.Our theoretical predictions prove to be remarkably consistent with our experimental results, though experimentally meeting all the structural prescriptions demanded by theory for true pure-state preparation remains a challenge. Our magnetic spectra agree with our model of triplet-pair behavior, including funneling of the population to the ms = 0 magnetic sublevel of the quintet under specified conditions in dimers and crystals, showing that this phenomenon is subject to control through molecular design. Moreover, our demonstration of novel and/or highly sensitive detection mechanisms of spin states in singlet fission systems, including photoluminescence (PL), photoinduced absorption (PA), and magnetoconductance (MC), points the way toward both a deeper understanding of how these systems evolve and technologically feasible routes toward experiments at the single-molecule quantum limit that are desirable for computational applications.

2.
J Chem Phys ; 157(16): 164702, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36319433

RESUMEN

Molecular spin systems based on photoexcited triplet pairs formed via singlet fission (SF) are attractive as carriers of quantum information because of their potentially pure and controllable spin polarization, but developing systems that offer optical routes to readout as well as initialization is challenging. Herein, we characterize the electron spin magnetic resonance change in the photoluminescence intensity for a tailored organic molecular crystal while sweeping a microwave drive up to 10 GHz in a broadband loop structure. We observe resonant transitions for both triplet and quintet spin sublevel populations showing their optical sensitivity and revealing the zero-field parameters for each. We map the evolution of these spectra in both microwave frequency and magnetic field, producing a pattern of optically detected magnetic resonance (ODMR) peaks. Fits to these data using a suitable model suggest significant spin polarization in this system with orientation selectivity. Unusual excitation intensity dependence is also observed, which inverts the sign of the ODMR signal for the triplet features, but not for the quintet. These observations demonstrate optical detection of the spin sublevel population dictated by SF and intermolecular geometry, and highlight anisotropic and multi-scale dynamics of triplet pairs.

3.
J Am Chem Soc ; 141(14): 5972-5979, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30882210

RESUMEN

Organic-inorganic halide perovskites incorporating two-dimensional (2D) structures have shown promise for enhancing the stability of perovskite solar cells (PSCs). However, the bulky spacer cations often limit charge transport. Here, we report on a simple approach based on molecular design of the organic spacer to improve the transport properties of 2D perovskites, and we use phenethylammonium (PEA) as an example. We demonstrate that by fluorine substitution on the para position in PEA to form 4-fluorophenethylammonium (F-PEA), the average phenyl ring centroid-centroid distances in the organic layer become shorter with better aligned stacking of perovskite sheets. The impact is enhanced orbital interactions and charge transport across adjacent inorganic layers as well as increased carrier lifetime and reduced trap density. Using a simple perovskite deposition at room temperature without using any additives, we obtained a power conversion efficiency of >13% for (F-PEA)2MA4Pb5I16-based PSCs. In addition, the thermal stability of 2D PSCs based on F-PEA is significantly enhanced compared to those based on PEA.

4.
J Am Chem Soc ; 139(14): 5201-5209, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28316244

RESUMEN

The development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to "smart" membranes and thermoelectrics. From this perspective, the understanding and tailoring of the electronic properties of MOFs are key fundamental challenges that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, Mx-yM'y-MOFs, MxM'y-MOFs, and Mx(ligand-M'y)-MOFs, in which the second metal (M') incorporation occurs through (i) metal (M) replacement in the framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity. These studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.

5.
ACS Energy Lett ; 9(3): 896-907, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38482181

RESUMEN

Energy transfer across the donor-acceptor interface in organic photovoltaics is usually beneficial to device performance, as it assists energy transport to the site of free charge generation. Here, we present a case where the opposite is true: dilute donor molecules in an acceptor host matrix exhibit ultrafast excitation energy transfer (EET) to the host, which suppresses the free charge yield. We observe an optimal photochemical driving force for free charge generation, as detected via time-resolved microwave conductivity (TRMC), but with a low yield when the sensitizer is excited. Meanwhile, transient absorption shows that transferred excitons efficiently produce charge-transfer states. This behavior is well described by a competition for the excited state between long-range electron transfer that produces free charge and EET that ultimately produces only localized charge-transfer states. It cannot be explained if the most localized CT states are the intermediate between excitons and the free charge in this system.

6.
J Phys Chem C Nanomater Interfaces ; 128(15): 6392-6400, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38655059

RESUMEN

Conjugated polymers composed of alternating electron donor and acceptor segments have come to dominate the materials being considered for organic photoelectrodes and solar cells, in large part because of their favorable near-infrared absorption. The prototypical electron-transporting push-pull polymer poly(NDI2OD-T2) (N2200) is one such material. While reasonably efficient organic solar cells can be fabricated with N2200 as the acceptor, it generally fails to contribute as much photocurrent from its absorption bands as the donor with which it is paired. Moreover, transient absorption studies have shown N2200 to have a consistently short excited-state lifetime (∼100 ps) that is dominated by a ground-state recovery. In this paper, we investigate whether these characteristics are intrinsic to the backbone structure of this polymer or if these are extrinsic effects from ubiquitous solution-phase and thin-film aggregates. We compare the solution-phase photophysics of N2200 with those of a pair of model compounds composed of alternating bithiophene (T2) donor and naphthalene diimide (NDI) acceptor units, NDI-T2-NDI and T2-NDI-T2, in a dilute solution. We find that the model compounds have even faster ground-state recovery dynamics (τ = 45, 27 ps) than the polymer (τ = 133 ps), despite remaining molecularly isolated in solution. In these molecules, as in the case of the N2200 polymer, the lowest excited state has a T2 to NDI charge-transfer (CT) character. Electronic-structure calculations indicate that the short lifetime of this state is due to fast nonradiative decay to the ground state (GS) promoted by strong CT-GS electronic coupling and strong electron-vibrational coupling with high-frequency (quantum) normal modes.

7.
Nano Lett ; 12(2): 893-8, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22248070

RESUMEN

We propose, simulate, and experimentally validate a new mechanical detection method to analyze atomic force microscopy (AFM) cantilever motion that enables noncontact discrimination of transient events with ~100 ns temporal resolution without the need for custom AFM probes, specialized instrumentation, or expensive add-on hardware. As an example application, we use the method to screen thermally annealed poly(3-hexylthiophene):phenyl-C(61)-butyric acid methyl ester photovoltaic devices under realistic testing conditions over a technologically relevant performance window. We show that variations in device efficiency and nanoscale transient charging behavior are correlated, thereby linking local dynamics with device behavior. We anticipate that this method will find application in scanning probe experiments of dynamic local mechanical, electronic, magnetic, and biophysical phenomena.


Asunto(s)
Nanoestructuras/química , Termodinámica , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Factores de Tiempo
8.
Adv Mater ; : e2210481, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36972554

RESUMEN

Time-resolved microwave conductivity is used to compare aqueous-soluble organic nanoparticle photocatalysts and bulk thin films composed of the same mixture of semiconducting polymer and non-fullerene acceptor molecule and the relationship between composition, interfacial surface area, charge-carrier dynamics, and photocatalytic activity is examined. The rate of hydrogen evolution reaction by nanoparticles composed of various donor:acceptor blend ratio compositions is quantitatively measured, and it is found that the most active blend ratio displays a hydrogen quantum yield of 0.83% per photon. Moreover, it is found that nanoparticle photocatalytic activity corresponds directly to charge generation, and that nanoparticles have 3× more long-lived accumulated charges relative to bulk samples of the same material composition. These results suggest that, under the current reaction conditions, with ≈3× solar flux, catalytic activity by the nanoparticles is limited by the concentration of electrons and holes in operando and not a finite number of active surface sites or the catalytic rate at the interface. This provides a clear design goal for the next generation of efficient photocatalytic nanoparticles.

9.
J Phys Chem Lett ; 14(9): 2387-2394, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36848633

RESUMEN

Singlet fission proceeds through a manifold of triplet-pair states that are exceedingly difficult to distinguish spectroscopically. Here, we introduce a new implementation of photoinduced-absorption-detected magnetic resonance (PADMR) and use it to understand the excited-state absorption spectrum of a tri-2-pentylsilylethynyl pentadithiophene (TSPS-PDT) film. These experiments allow us to directly correlate magnetic transitions driven by RF with electronic transitions in the visible and near-infrared spectrum with high sensitivity. We find that the new near-infrared excited-state transitions that arise in thin films of TSPS-PDT are correlated with the magnetic transitions of T1, not 5TT. Thus, we assign these features to the excited-state absorption of 1TT, which is depleted when T1 states are driven to a spin configuration that forbids subsequent fusion. These results clarify the disputed origin of triplet-associated near-infrared absorption features in singlet-fission materials and demonstrate an incisive general purpose tool for studying the evolution of high-spin excited states.

10.
ACS Energy Lett ; 8(12): 5116-5127, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38094752

RESUMEN

Polymer semiconductors are fascinating materials that could enable delivery of chemical fuels from water and sunlight, offering several potential advantages over their inorganic counterparts. These include extensive synthetic tunability of optoelectronic and redox properties and unique opportunities to tailor catalytic sites via chemical control over the nanoenvironment. Added to this is proven functionality of polymer semiconductors in solar cells, low-cost processability, and potential for large-area scalability. Herein we discuss recent progress on soft photoelectrochemical systems and define three critical knowledge gaps that must be closed for these materials to reach their full potential. We must (1) understand the influence of electrolyte penetration on photoinduced charge separation, transport, and recombination, (2) learn to exploit the swollen polymer/electrolyte interphase to drive selective fuel formation, and (3) establish co-design criteria for soft materials that sustain function in the face of harsh chemical challenges. Achieving these formidable goals would enable tailorable systems for driving photoelectrochemical fuel production at scale.

11.
J Phys Chem Lett ; 13(42): 9895-9902, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36256578

RESUMEN

Photoexcited triplet states are promising candidates for hybrid qubit systems, as they can be used as a controlling gate for nuclear spins. But microwave readout schemes do not generally offer the sensitivity needed to approach the single-molecule limit or the scope to integrate such systems into devices. Here, we demonstrate the possibility of electrical readout of triplet spins at room temperature through a specific mechanism of magnetoconductance (MC) in polycrystalline pentacene. We show that hole-only pentacene devices exhibit a positive photoinduced MC response that is consistent with a trap-filling mechanism. Spin and magnetic-field-dependent quenching of photogenerated triplets by holes quantitatively explains the MC response we observe. These results are distinct in both sign and proposed mechanism compared to previous reports on polyacene materials and provide clear design rules for future spintronic devices based on this spin-sensing mechanism.

12.
J Phys Chem Lett ; 13(10): 2388-2395, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35257587

RESUMEN

The optoelectronic properties of lead halide perovskite thin films can be tuned through compositional variations and strain, but the associated nanocrystalline structure makes it difficult to untangle the link between composition, processing conditions, and ultimately material properties and degradation. Here, we study the effect of processing conditions and degradation on the local photoconductivity dynamics in [(CsPbI3)0.05(FAPbI3)0.85(MAPbBr3)0.15] and (FA0.7Cs0.3PbI3) perovskite thin films using temporally and spectrally resolved microwave near-field microscopy with a temporal resolution as high as 5 ns and a spatial resolution better than 50 nm. For the latter FACs formulation, we find a clear effect of the process annealing temperature on film morphology, stability, and spatial photoconductivity distribution. After exposure of samples to ambient conditions and illumination, we find spectral evidence of halide segregation-induced degradation below the instrument resolution limit for the mixed halide formulation, while we find a clear spatially inhomogeneous increase in the carrier lifetime for the FACs formulation annealed at 180 °C.

13.
Mater Horiz ; 9(1): 312-324, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34787147

RESUMEN

Understanding how Frenkel excitons efficiently split to form free-charges in low-dielectric constant organic semiconductors has proven challenging, with many different models proposed in recent years to explain this phenomenon. Here, we present evidence that a simple model invoking a modest amount of charge delocalization, a sum over the available microstates, and the Marcus rate constant for electron transfer can explain many seemingly contradictory phenomena reported in the literature. We use an electron-accepting fullerene host matrix dilutely sensitized with a series of electron donor molecules to test this hypothesis. The donor series enables us to tune the driving force for photoinduced electron transfer over a range of 0.7 eV, mapping out normal, optimal, and inverted regimes for free-charge generation efficiency, as measured by time-resolved microwave conductivity. However, the photoluminescence of the donor is rapidly quenched as the driving force increases, with no evidence for inverted behavior, nor the linear relationship between photoluminescence quenching and charge-generation efficiency one would expect in the absence of additional competing loss pathways. This behavior is self-consistently explained by competitive formation of bound charge-transfer states and long-range or delocalized free-charge states, where both rate constants are described by the Marcus rate equation. Moreover, the model predicts a suppression of the inverted regime for high-concentration blends and efficient ultrafast free-charge generation, providing a mechanistic explanation for why Marcus-inverted-behavior is rarely observed in device studies.

14.
Adv Mater ; 34(22): e2101932, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34850459

RESUMEN

2D polymers (2DPs) are promising as structurally well-defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)-containing 2DP semiconductors is enhanced by controllably n-doping the NDI units using cobaltocene (CoCp2 ). Optical and transient microwave spectroscopy reveal that both as-prepared NDI-containing 2DPs are semiconducting with sub-2 eV optical bandgaps and photoexcited charge-carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2 , both 2DPs largely retain their periodic structures and exhibit optical and electron-spin resonance spectroscopic features consistent with the presence of NDI-radical anions. While the native NDI-based 2DPs are electronically insulating, maximum bulk conductivities of >10-4  S cm-1 are achieved by substoichiometric levels of n-doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out-of-plane (π-stacking) crystallographic directions, which indicates that cross-plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well-defined, paramagnetic, 2DP n-type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.

15.
Acc Chem Res ; 43(5): 612-20, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20143815

RESUMEN

The use of organic photovoltaics (OPVs) could reduce production costs for solar cells because these materials are solution processable and can be manufactured by roll-to-roll printing. The nanoscale texture, or film morphology, of the donor/acceptor blends used in most OPVs is a critical variable that can dominate both the performance of new materials being optimized in the lab and efforts to move from laboratory-scale to factory-scale production. Although efficiencies of organic solar cells have improved significantly in recent years, progress in morphology optimization still occurs largely by trial and error, in part because much of our basic understanding of how nanoscale morphology affects the optoelectronic properties of these heterogeneous organic semiconductor films has to be inferred indirectly from macroscopic measurements. In this Account, we review the importance of nanoscale morphology in organic semiconductors and the use of electrical scanning probe microscopy techniques to directly probe the local optoelectronic properties of OPV devices. We have observed local heterogeneity of electronic properties and performance in a wide range of systems, including model polymer-fullerene blends such as poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), newer polyfluorene copolymer-PCBM blends, and even all polymer donor-acceptor blends. The observed heterogeneity in local photocurrent poses important questions, chiefly what information is contained and what is lost when using average values obtained from conventional measurements on macroscopic devices and bulk samples? We show that in many cases OPVs are best thought of as a collection of nanoscopic photodiodes connected in parallel, each with their own morphological and therefore electronic and optical properties. This local heterogeneity forces us to carefully consider the adequacy of describing OPVs solely by "average" properties such as the bulk carrier mobility. Characterizing this local heterogeneity in the morphology of an OPV and the consequent variations in local performance is vital to understanding OPV operation.

16.
Mater Horiz ; 8(5): 1509-1517, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846459

RESUMEN

The primary photoexcited species in excitonic semiconductors is a bound electron-hole pair, or exciton. An important strategy for producing separated electrons and holes in photoexcited excitonic semiconductors is the use of donor/acceptor heterojunctions, but the degree to which the carriers can escape their mutual Coulomb attraction is still debated for many systems. Here, we employ a combined pump-probe ultrafast transient absorption (TA) spectroscopy and time-resolved microwave conductivity (TRMC) study on a suite of model excitonic heterojunctions consisting of mono-chiral semiconducting single-walled carbon nanotube (s-SWCNT) electron donors and small-molecule electron acceptors. Comparison of the charge-separated state dynamics between TA and TRMC photoconductance reveals a quantitative match over the 0.5 microsecond time scale. Charge separation yields derived from TA allow extraction of s-SWCNT hole mobilities of ca. 1.5 cm2 V-1 s-1 (at 9 GHz) by TRMC. The correlation between the techniques conclusively demonstrates that photoinduced charge carriers separated across these heterojunctions do not form bound charge transfer states, but instead form free/mobile charge carriers.

17.
Nano Lett ; 9(8): 2946-52, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19588929

RESUMEN

We use photoconductive atomic force microscopy to image nanoscale spatial variations in photocurrent across the surfaces of photovoltaic cells made from blends of the conjugated polymer regioregular poly(3-hexylthiopene) (P3HT) with phenyl-C(61)-butyric acid methyl ester (PCBM). We study how the spatial variations in photocurrent evolve with thermal annealing, and we correlate these changes with the evolution of macroscopic film and device properties such as external quantum efficiency and carrier mobility. We use conductive atomic force microscopy to examine the development of injection and transport networks for both electrons and holes as a function of annealing. We find that the hole transport, electron transport, and photocurrent collection networks become increasingly heterogeneous with thermal annealing and remain heterogeneous on the 10-100 nm length scale even in the most efficient P3HT/PCBM devices. After annealing, the regions of the greatest dark hole currents, greatest dark electron currents, and greatest photocurrents are each associated with different regions of the nanostructured films. These results suggest spatial heterogeneity can contribute to the imperfect internal quantum efficiency even in relatively efficient organic photovoltaics and that fully 3D modeling is needed to describe the devices physics of polymer blend solar cells.

18.
Chem Sci ; 11(27): 7226-7238, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34123008

RESUMEN

In singlet fission (SF) the initially formed correlated triplet pair state, 1(TT), may evolve toward independent triplet excitons or higher spin states of the (TT) species. The latter result is often considered undesirable from a light harvesting perspective but may be attractive for quantum information sciences (QIS) applications, as the final exciton pair can be spin-entangled and magnetically active with relatively long room temperature decoherence times. In this study we use ultrafast transient absorption (TA) and time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy to monitor SF and triplet pair evolution in a series of alkyl silyl-functionalized pentadithiophene (PDT) thin films designed with systematically varying pairwise and long-range molecular interactions between PDT chromophores. The lifetime of the (TT) species varies from 40 ns to 1.5 µs, the latter of which is associated with extremely weak intermolecular coupling, sharp optical spectroscopic features, and complex TR-EPR spectra that are composed of a mixture of triplet and quintet-like features. On the other hand, more tightly coupled films produce broader transient optical spectra but simpler TR-EPR spectra consistent with significant population in 5(TT)0. These distinctions are rationalized through the role of exciton diffusion and predictions of TT state mixing with low exchange coupling J versus pure spin substate population with larger J. The connection between population evolution using electronic and spin spectroscopies enables assignments that provide a more detailed picture of triplet pair evolution than previously presented and provides critical guidance for designing molecular QIS systems based on light-induced spin coherence.

19.
Nanoscale ; 12(15): 8344-8354, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32236241

RESUMEN

By understanding how the environmental composition impacts the optoelectronic properties of transition metal dichalcogenide monolayers, we demonstrate that simple photoluminescence (PL) measurements of tungsten disulfide (WS2) monolayers can differentiate relative humidity environments. In this paper, we examine the PL and photoconductivity of chemical vapor deposition grown WS2 monolayers under three carefully controlled environments: inert gas (N2), dry air (O2 in N2), and humid nitrogen (H2O vapor in N2). The WS2 PL is measured as a function of 532 nm laser power and exposure time and can be decomposed into the exciton, trion, and lower energy state(s) contributions. Under continuous illumination in either O2 or H2O vapor environment, we find dramatic (and reversible) increases in PL intensity relative to the PL in an inert environment. The PL bathochromically shifts in an O2 environment and is dominated by increased trion emission and diminished exciton emission. In contrast, the WS2 PL increase in a H2O environment results from an overall increase in emission from all spectral components where the exciton contribution dominates. The drastic increases in PL are anticorrelated with corresponding decreases in photoconductivity, as measured by time-resolved microwave conductivity. The results suggest that both O2 and H2O react photochemically with the WS2 monolayer surface, modifying the optoelectronic properties, but do so via distinct pathways. Thus, we use these optoelectronic differences to differentiate the amount of humidity in the air, which we show with 0%, 40%, and 80% relative humidity environments. This deeper understanding of how ambient conditions impact WS2 monolayers enables novel humidity sensors as well as a better understanding of the correlation between TMDC surface chemistry, light emission, and photoconductivity. Moreover, these WS2 measurements highlight the importance of considering the impact of the local environment on reported results.

20.
Nat Chem ; 12(1): 63-70, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31767991

RESUMEN

Singlet fission promises to surpass the Shockley-Queisser limit for single-junction solar cell efficiency through the production of two electron-hole pairs per incident photon. However, this promise has not been fulfilled because singlet fission produces two low-energy triplet excitons that have been unexpectedly difficult to dissociate into free charges. To understand this phenomenon, we study charge separation from triplet excitons in polycrystalline pentacene using an electrochemical series of 12 different guest electron-acceptor molecules with varied reduction potentials. We observe separate optima in the charge yield as a function of driving force for singlet and triplet excitons, including inverted regimes for the dissociation of both states. Molecular acceptors can thus provide a strategic advantage to singlet fission solar cells by suppressing singlet dissociation at optimal driving forces for triplet dissociation. However, even at the optimal driving force, the rate constant for charge transfer from the triplet state is surprisingly small, ~107 s-1, presenting a previously unidentified obstacle to the design of efficient singlet fission solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA