Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339011

RESUMEN

In childhood, retinoblastoma (RB) is the most common primary tumor in the eye. Long term therapeutic management with etoposide of this life-threatening condition may have diminishing effectiveness since RB cells can develop cytostatic resistance to this drug. To determine whether changes in receptor-mediated control of Ca2+ signaling are associated with resistance development, fluorescence calcium imaging, semi-quantitative RT-qPCR analyses, and trypan blue dye exclusion staining patterns are compared in WERI-ETOR (etoposide-insensitive) and WERI-Rb1 (etoposide-sensitive) cells. The cannabinoid receptor agonist 1 (CNR1) WIN55,212-2 (40 µM), or the transient receptor potential melastatin 8 (TRPM8) agonist icilin (40 µM) elicit similar large Ca2+ transients in both cell line types. On the other hand, NGF (100 ng/mL) induces larger rises in WERI-ETOR cells than in WERI-Rb1 cells, and its lethality is larger in WERI-Rb1 cells than in WERI-ETOR cells. NGF and WIN55,212-2 induced additive Ca2+ transients in both cell types. However, following pretreatment with both NGF and WIN55,212-2, TRPM8 gene expression declines and icilin-induced Ca2+ transients are completely blocked only in WERI-ETOR cells. Furthermore, CNR1 gene expression levels are larger in WERI-ETOR cells than those in WERI-Rb1 cells. Therefore, the development of etoposide insensitivity may be associated with rises in CNR1 gene expression, which in turn suppress TRPM8 gene expression through crosstalk.


Asunto(s)
Receptor de Factor de Crecimiento Nervioso , Neoplasias de la Retina , Retinoblastoma , Canales Catiónicos TRPM , Humanos , Línea Celular , Etopósido/farmacología , Etopósido/uso terapéutico , Proteínas de la Membrana/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Neoplasias de la Retina/tratamiento farmacológico , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Receptor Cannabinoide CB1/metabolismo
2.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511574

RESUMEN

Tear film hyperosmolarity induces dry eye syndrome (DES) through transient receptor potential vanilloid type 1 (TRPV1) activation. L-carnitine is a viable therapeutic agent since it protects against this hypertonicity-induced response. Here, we investigated whether L-carnitine inhibits TRPV1 activation by blocking heat- or capsaicin-induced increases in Ca2+ influx or hyperosmotic stress-induced cell volume shrinkage in a human corneal epithelial cell line (HCE-T). Single-cell fluorescence imaging of calcein/AM-loaded cells or fura-2/AM-labeled cells was used to evaluate cell volume changes and intracellular calcium levels, respectively. Planar patch-clamp technique was used to measure whole-cell currents. TRPV1 activation via either capsaicin (20 µmol/L), hyperosmolarity (≈450 mosmol/L) or an increase in ambient bath temperature to 43 °C induced intracellular calcium transients and augmented whole-cell currents, whereas hypertonicity induced cell volume shrinkage. In contrast, either capsazepine (10 µmol/L) or L-carnitine (1-3 mmol/L) reduced all these responses. Taken together, L-carnitine and capsazepine suppress hypertonicity-induced TRPV1 activation by blocking cell volume shrinkage.


Asunto(s)
Antineoplásicos , Carnitina , Humanos , Carnitina/farmacología , Carnitina/metabolismo , Capsaicina/farmacología , Capsaicina/metabolismo , Calcio/metabolismo , Antineoplásicos/metabolismo , Células Epiteliales/metabolismo , Canales Catiónicos TRPV/metabolismo
3.
Exp Eye Res ; 220: 109096, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490837

RESUMEN

We previously showed that increases in reactive oxygen species (ROS) generation upregulate NLRP3 inflammasome and inflammation through increases in both caspase-1 activity and rises in IL-1ß expression levels in animal models of dry eye (DE). As changes in microRNA (miRNAs) expression levels can modulate inflammasome function, we determine here if there is a relationship in DE between changes in miR-223 expression levels and NLRP3 activation induced in an intelligent controlled environmental system (ICES) in mice. In parallel, ROS, miR-223 and NLRP3 expression levels were assessed in conjunctival impression cytology and tear fluid samples obtained from DE patients and normal subjects. MiR-223 expression levels were modulated by transfection of either a mimic or its negative control (NC) in a human corneal epithelial cell line (HCECs) exposed to a 500 mOsm hyperosmotic medium for 4 h. The dual-luciferase reporter assay confirmed that miR-223 controls NLRP3 gene expression readout through directly interacting with the 3' UTR of its mRNA. Hyperosmolarity-induced NLRP3 activation was confirmed based on recruitment and colocalization of NLRP3 with ASC as well as increases in IL-1ß expression. The miR-223 expression level decreased by 55% in the conjunctiva and cornea of the murine DE model from the level in the control group (P ≤ 0.047), while NLRP3 protein expression rose by 30% (P ≤ 0.017). In DE patients, miR-223 expression decreased in conjunctival impression cytology samples (P = 0.002), whereas IL-1ß tear content rose significantly (P < 0.001).The relevance of this decline was confirmed by showing that exposure to a 500 mOsm stress decreased the miR-223 expression level whereas ROS generation as well as the NLRP3, and IL-1ß expression levels rose in HCECs (P ≤ 0.037). In contrast, miR-223 mimic transfection reduced the NLRP3 protein expression level by 30% (P = 0.037), whereas both ROS generation and IL-1ß secretion rose compared to their corresponding levels in the control group (P ≤ 0.043). Thus, miR-223 negatively regulates NLRP3 inflammasome activity via suppressing NLRP3 translation in DE. This inverse regulation between miR-223 and NLRP3 expression levels suggests that selective upregulation of miR-223 expression may be a novel option to suppress chronic inflammation in DE.


Asunto(s)
Síndromes de Ojo Seco , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Caspasa 1/genética , Caspasa 1/metabolismo , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/metabolismo , Células Epiteliales/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Ratones , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Exp Eye Res ; 218: 109018, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35240197

RESUMEN

The process of eye axis lengthening in myopic eyes is regulated by multiple mechanisms in the retina, and horizontal cells (HCs) are an essential interneuron in the visual regulatory system. Wherein intracellular Ca2+ plays an important role in the events involved in the regulatory role of HCs in the retinal neural network. It is unknown if intracellular Ca2+ regulation in HCs mediates changes in the retinal neural network during myopia progression. We describe here a novel calcium fluorescence indicator system that monitors HCs' intracellular Ca2+ levels during form-deprivation myopia (FDM) in mice. AAV injection of GCaMP6s, as a protein calcium sensor, into a Gja10-Cre mouse monitored the changes in Ca2+signaling in HC that accompany FDM progression in mice. An alternative Gja10-Cre/Ai96-GCaMP6s mouse model was created by cross mating Gja10-Cre with Ai96 mice. Immunofluorescence imaging and live imaging of the retinal cells verified the identity of these animal models. Changes in retinal horizontal cellular Ca2+ levels were resolved during FDM development. The numbers of GCaMP6s and the proportion of HCs were tracked based on profiling changes in GCaMP6s+calbindin+/calbindin+ coimmunostaining patterns. They significantly decreased more after either two days (P < 0.01) or two weeks (P < 0.001) in form deprived eyes than in the untreated fellow eyes. These decreases in their proportion reached significance only in the retinal central region rather than also in the retinal periphery. A novel approach employing a GCaMP6s mouse model was developed that may ultimately clarify if HCs mediate Ca2+ signals that contribute to controlling FDM progression in mice. The results indicate so far that FDM progression is associated with declines in HC Ca2+ signaling activity.


Asunto(s)
Miopía , Células Horizontales de la Retina , Animales , Calbindinas/metabolismo , Calcio/metabolismo , Modelos Animales de Enfermedad , Ratones , Miopía/metabolismo , Retina/metabolismo , Células Horizontales de la Retina/metabolismo , Privación Sensorial
5.
Lab Invest ; 101(2): 245-257, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199821

RESUMEN

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid generated through sphingosine kinase1 (SPK1)-mediated phosphorylation of sphingosine. We show here that injury-induced S1P upregulation increases corneal neovascularization through stimulating S1PR3, a cognate receptor. since this response was suppressed in S1PR3-knockout mice. Furthermore, Cayman10444, a selective S1PR3 inhibitor, reduced this response in WT mice. Such reductions in neovascularization were associated with reduced vascular endothelial growth factor A (VEGF-A) mRNA expression levels in WT TKE2 corneal epithelial cells and macrophages treated with CAY10444 as well as macrophages isolated from S1PR3 KO mice. S1P increased tube-like vessel formation in human vascular endothelial cells (HUVEC) and human retinal microvascular endothelial cells (HRMECs) cells expressing S1PR3. In S1PR3 KO mice, TGFß1-induced increases in αSMA gene expression levels were suppressed relative to those in the WT counterparts. In S1PR3 deficient macrophages, VEGF-A expression levels were lower than in WT macrophages. Transforming growth factor ß1(TGFß1) upregulated SPK1 expression levels in ocular fibroblasts and TKE2 corneal epithelial cells. CAY10444 blocked S1P-induced increases in VEGF-A mRNA expression levels in TKE2 corneal epithelial cells. Endogenous S1P signaling upregulated VEGF-A and VE-cadherin mRNA expression levels in HUVEC. Unlike in TKE2 cells, SIS3 failed to block TGFß1-induced VEGF-A upregulation in ocular fibroblasts. Taken together, these results indicate that injury-induced TGFß1 upregulation increases S1P generation through increases in SPK1 activity. The rise in S1P formation stimulates the S1PR3-linked signaling pathway, which in turn increases VEGF-A expression levels and angiogenesis in mouse corneas.


Asunto(s)
Córnea , Lesiones de la Cornea/metabolismo , Neovascularización Fisiológica/genética , Receptores de Esfingosina-1-Fosfato , Animales , Células Cultivadas , Córnea/citología , Córnea/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Tiazolidinas/farmacología
6.
Lab Invest ; 101(6): 690-700, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782532

RESUMEN

The purpose of the study was to uncover the role of tenascin X in modulation of healing in mouse corneas subjected to epithelium debridement. Healing in corneas with an epithelial defect was evaluated at the levels of gene and protein expression. Wound healing-related mediators and inflammatory cell infiltration were detected by histology, immunohistochemistry and real-time RT-PCR. Tenascin X protein was upregulated in the wounded wild-type (WT) corneal epithelium. The lack of tenascin X impaired closure of an epithelial defect and accelerated infiltration of neutrophils into the wound periphery as compared to the response in WT tissue. Expression of wound healing-related proinflammatory and reparative components, i.e., interleukin-6, transforming growth factor ß, matrix metalloproteinases, were unaffected by the loss of tenascin X expression. Marked accumulation of malondialdehyde (a lipid peroxidation-derived product) was observed in KO healing epithelia as compared with its WT counterpart. Neutropenia induced by systemic administration of a specific antibody rescued the impairment of epithelial healing in KO corneas, with reduction of malondialdehyde levels in the epithelial cells. Finally, we showed that a chemical scavenging reactive oxygen species reversed the impairment of attenuation of epithelial repair with a reduction of tissue levels of malondialdehyde. In conclusion, loss of tenascin X prolonged corneal epithelial wound healing and increased neutrophilic inflammatory response to debridement in mice. Tenascin X contributes to the control of neutrophil infiltration needed to support the regenerative response to injury and prevent the oxidative stress mediators from rising to cytotoxic levels.


Asunto(s)
Córnea/inmunología , Infiltración Neutrófila , Especies Reactivas de Oxígeno/metabolismo , Tenascina/fisiología , Cicatrización de Heridas/inmunología , Animales , Córnea/metabolismo , Ratones Noqueados
7.
Lab Invest ; 101(6): 680-689, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33637945

RESUMEN

Corneal stromal wound healing is a well-balanced process promoted by overlapping phases including keratocyte proliferation, inflammatory-related events, and tissue remodeling. L-carnitine as a natural antioxidant has shown potential to reduce stromal fibrosis, yet the underlying pathway is still unknown. Since transient receptor potential vanilloid 1 (TRPV1) is a potential drug target for improving the outcome of inflammatory/fibrogenic wound healing, we investigated if L-carnitine can mediate inhibition of the fibrotic response through suppression of TRPV1 activation in human corneal keratocytes (HCK). We determined TRPV1-induced intracellular calcium transients using fluorescence calcium imaging, channel currents by planar patch-clamping, and cell migration by scratch assay for wound healing. The potential L-carnitine effect on TRPV1-induced myofibroblast transdifferentiation was evaluated by immunocytochemical detection of alpha smooth muscle actin. RT-PCR analysis confirmed TRPV1 mRNA expression in HCK. L-carnitine (1 mmol/l) inhibited either capsaicin (CAP) (10 µmol/l), hypertonic stress (450 mOsmol/l), or thermal increase (>43 °C) induced Ca2+ transients and corresponding increases in TRPV1-induced inward and outward whole-cell currents. This was accompanied by suppression of injury-induced increases in myofibroblast transdifferentiation and cell migration. In conclusion, L-carnitine contributes to inhibit stromal scarring through suppressing an injury-induced intrinsic TRPV1 activity that is linked with induction of myofibroblast transdifferentiation in HCK cells.


Asunto(s)
Carnitina/uso terapéutico , Transdiferenciación Celular/efectos de los fármacos , Queratocitos de la Córnea/efectos de los fármacos , Sustancia Propia/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Carnitina/farmacología , Células Cultivadas , Sustancia Propia/citología , Evaluación Preclínica de Medicamentos , Humanos , Miofibroblastos , Canales Catiónicos TRPV/efectos de los fármacos
8.
Am J Pathol ; 190(9): 1888-1908, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32553806

RESUMEN

Myopia is a leading cause of visual impairment worldwide. This sight-compromising condition is associated with scleral thinning, extracellular matrix remodeling, and inappropriate optical axial length elongation. Although macrophages are present in the sclera, their involvement in this condition is unknown. By using a form-deprivation myopia (FDM) mouse model, we found that both the scleral macrophage density and their matrix metalloproteinase-2 (MMP-2) expression levels increased in myopic eyes. Partial scleral macrophage depletion by clodronate shifted the refraction toward hyperopia in both the form-deprived and the untreated fellow eyes compared with their respective counterparts in the vehicle-injected control mice. However, this procedure did not alter susceptibility to FDM. FDM development was 59% less in the macrophage-specific Mmp2 deletion (LysMCreMmp-2fl/fl) mice than in their Cre-negative littermates (Mmp2fl/fl mice). Moreover, the expression of scleral C-C motif chemokine ligand-2 (CCL2), which is a potent monocyte chemoattractant recruiting monocytes to tissue sites, was increased during myopia progression. However, the increase in the density of scleral macrophages and myopia development were suppressed in fibroblast-specific Ccl2 deletion mice. These declines suggested that the increase in scleral macrophage density in myopic eyes stems from the up-regulation of scleral Ccl2 expression in fibroblasts, which, in turn, promotes monocytes recruitment. In summary, scleral monocyte-derived macrophages contribute to myopia development through enhancing MMP-2 expression in mice.


Asunto(s)
Macrófagos/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Miopía/enzimología , Esclerótica/enzimología , Esclerótica/patología , Animales , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Miopía/patología , Regulación hacia Arriba
9.
Exp Eye Res ; 202: 108332, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152389

RESUMEN

Form deprivation myopia (FDM) is characterized by loss of choroidal thickness (ChT), reduced choroidal blood perfusion (ChBP), and consequently scleral hypoxia. In some tissues, changes in levels of peroxisome proliferator-activated receptor γ (PPARγ) expression modulate hypoxia-induced pathological responses. We determined if PPARγ modulates FDM through changes in ChT, ChBP, scleral hypoxia-inducible transcription factor (HIF-1α) that in turn regulate scleral collagen type 1 (COL1) expression levels in guinea pigs. Myopia was induced by occluding one eye, while the fellow eye served as control. They received daily peribulbar injections of either the PPARγ antagonist GW9662, or the GW1929 agonist, with or without ocular occlusion for 4 weeks. Ocular refraction and biometric parameters were estimated at baseline, 2 and 4 weeks post-treatment. ChT and ChBP were measured at the 2- and 4-week time points. Western blot analysis determined the expression levels of scleral HIF-1α and COL1. GW9662 induced a myopic shift in unoccluded eyes. Conversely, GW1929 inhibited FDM progression without affecting the refraction in unoccluded eyes. GW9662 reduced both ChT and ChBP in unoccluded eyes, while GW1929 inhibited their declines in occluded eyes. Scleral HIF-1α expression rose in GW9662-treated unoccluded eyes whereas GW1929 reduced HIF-1α upregulation in occluded eyes. GW9662 downregulated scleral COL1 expression in unoccluded eyes, while GW1929 reduced their decreases in occluded eyes. Therefore, PPARγ modulates collagen expression levels and FDM through an inverse relationship between changes in PPARγ and HIF-1α expression levels.


Asunto(s)
Miopía/fisiopatología , PPAR gamma/fisiología , Refracción Ocular/fisiología , Privación Sensorial , Anilidas/farmacología , Animales , Western Blotting , Coroides/irrigación sanguínea , Coroides/patología , Cobayas , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Tamaño de los Órganos , Esclerótica/irrigación sanguínea
10.
Exp Eye Res ; 212: 108758, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34506801

RESUMEN

Myopia is the most common cause of a visual refractive error worldwide. Cyclic adenosine monophosphate (cAMP)-linked signaling pathways contribute to the regulation of myopia development, and increases in cAMP accumulation promote myopia progression. To pinpoint the underlying mechanisms by which cAMP modulates myopia progression, we performed scleral transcriptome sequencing analysis in form-deprived mice, a well-established model of myopia development. Form deprivation significantly inhibited the expression levels of genes in the cAMP catabolic pathway. Quantitative real-time polymerase chain reaction analysis validated that the gene expression level of phosphodiesterase 4B (PDE4B), a cAMP hydrolase, was downregulated in form-deprived mouse eyes. Under visually unobstructed conditions, loss of PDE4B function in Pde4b-knockout mice increased the myopic shift in refraction, -3.661 ± 1.071 diopters, more than that in the Pde4b-wildtype littermates (P < 0.05). This suggests that downregulation and inhibition of PDE4B gives rise to myopia. In guinea pigs, subconjunctival injection of rolipram, a selective inhibitor of PDE4, led to myopia in normal eyes, and it also enhanced form-deprivation myopia (FDM). Subconjunctival injection of dibutyryl-cyclic adenosine monophosphate, a cAMP analog, induced only a myopic shift in the normal visually unobstructed eyes, but it did not enhance FDM. As myopia developed, axial elongation occurred during scleral remodeling that was correlated with changes in collagen fibril thickness and distribution. The median collagen fibril diameter in the FDM + rolipram group, 55.09 ± 1.83 nm, was thinner than in the FDM + vehicle group, 59.33 ± 2.06 nm (P = 0.011). Thus, inhibition of PDE4 activity with rolipram thinned the collagen fibril diameter relative to the vehicle treatment in form-deprived eyes. Rolipram also inhibited increases in collagen synthesis induced by TGF-ß2 in cultured human scleral fibroblasts. The current results further support a role for PDE enzymes such as PDE4B in the regulation of normal refractive development and myopia because either loss or inhibition of PDE4B function increased myopia and FDM development through declines in the scleral collagen fibril diameter.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica , Miopía Degenerativa/genética , ARN/genética , Esclerótica/metabolismo , Animales , Colágeno/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/biosíntesis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Cobayas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Miopía Degenerativa/diagnóstico , Miopía Degenerativa/metabolismo , Refracción Ocular/fisiología , Esclerótica/ultraestructura
11.
Proc Natl Acad Sci U S A ; 115(30): E7091-E7100, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987045

RESUMEN

Worldwide, myopia is the leading cause of visual impairment. It results from inappropriate extension of the ocular axis and concomitant declines in scleral strength and thickness caused by extracellular matrix (ECM) remodeling. However, the identities of the initiators and signaling pathways that induce scleral ECM remodeling in myopia are unknown. Here, we used single-cell RNA-sequencing to identify pathways activated in the sclera during myopia development. We found that the hypoxia-signaling, the eIF2-signaling, and mTOR-signaling pathways were activated in murine myopic sclera. Consistent with the role of hypoxic pathways in mouse model of myopia, nearly one third of human myopia risk genes from the genome-wide association study and linkage analyses interact with genes in the hypoxia-inducible factor-1α (HIF-1α)-signaling pathway. Furthermore, experimental myopia selectively induced HIF-1α up-regulation in the myopic sclera of both mice and guinea pigs. Additionally, hypoxia exposure (5% O2) promoted myofibroblast transdifferentiation with down-regulation of type I collagen in human scleral fibroblasts. Importantly, the antihypoxia drugs salidroside and formononetin down-regulated HIF-1α expression as well as the phosphorylation levels of eIF2α and mTOR, slowing experimental myopia progression without affecting normal ocular growth in guinea pigs. Furthermore, eIF2α phosphorylation inhibition suppressed experimental myopia, whereas mTOR phosphorylation induced myopia in normal mice. Collectively, these findings defined an essential role of hypoxia in scleral ECM remodeling and myopia development, suggesting a therapeutic approach to control myopia by ameliorating hypoxia.


Asunto(s)
Matriz Extracelular/metabolismo , Hipoxia , Miopía/terapia , Esclerótica/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Matriz Extracelular/patología , Proteínas del Ojo/metabolismo , Cobayas , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Miopía/metabolismo , Miopía/patología , Esclerótica/irrigación sanguínea , Esclerótica/patología , Serina-Treonina Quinasas TOR/metabolismo
12.
J Cell Physiol ; 235(10): 7107-7119, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32017066

RESUMEN

N6 -methyladenosine (m6 A) is a novel epitranscriptomic marker that contributes to regulating diverse biological processes through controlling messenger RNA metabolism. However, it is unknown if m6 A RNA methylation affects uveal melanoma (UM) development. To address this question, we probed its function and molecular mechanism in UM. Initially, we demonstrated that global RNA m6 A methylation levels were dramatically elevated in both UM cell lines and clinical specimens. Meanwhile, we found that METTL3, a main m6 A regulatory enzyme, was significantly increased in UM cells and specimens. Subsequently, cycloleucine (Cyc) or METTL3 targeted small interfering RNA was used to block m6 A methylation in UM cells. We found that Cyc or silencing METTL3 significantly suppressed UM cell proliferation and colony formation through cell cycle G1 arrest, as well as migration and invasion by functional analysis. On the other hand, overexpression of METTL3 had the opposite effects. Furthermore, bioinformatics and methylated RNA immunoprecipitation-quantitative polymerase chain reaction identified c-Met as a direct target of m6 A methylation in UM cells. In addition, western blot analysis showed that Cyc or knockdown of METTL3 downregulated c-Met, p-Akt, and cell cycle-related protein levels in UM cells. Taken together, our results demonstrate that METTL3-mediated m6 A RNA methylation modulates UM cell proliferation, migration, and invasion by targeting c-Met. Such a modification acts as a critical oncogenic regulator in UM development.


Asunto(s)
Melanoma/genética , Proteínas Proto-Oncogénicas c-met/genética , ARN Neoplásico/genética , Neoplasias de la Úvea/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Humanos , Melanoma/metabolismo , Melanoma/patología , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Metiltransferasas/metabolismo , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo , Regulación hacia Arriba , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología
13.
Cutan Ocul Toxicol ; 39(2): 75-82, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31986917

RESUMEN

Purpose: We examined the effects of travoprost on cell proliferation-related signals and E-cadherin expression in vitro and in situ in order to obtain evidence to support the hypothesis that topical travoprost impairs the integrity of the corneal epithelium.Methods: A human corneal epithelial cell culture was treated with travoprost (0.4 mg/ml) and/or PD168393 (an EGF receptor inhibitor, 10 µM). The culture was then processed for cell proliferation, an mRNA expression analysis of epidermal growth factor (EGF) and E-cadherin, and protein expression analysis of E-cadherin by immunocytochemistry and Western blotting. The eyes of C57/BL6 mice were incubated in serum-free medium plus travoprost (0.4 mg/ml) and/or PD168393 (10 µM). After being cultured for 24 h, the expression patterns of phospho-EGFR, phospho-ERK, E-cadherin, and Ki67 were immunohistochemically examined in paraffin sections.Results: The addition of travoprost up-regulated EGF mRNA expression and cell proliferation in the corneal epithelial cell culture, and this was cancelled by the addition of PD168393. This FP agonist also decreased E-cadherin expression levels in the cell-cell contact zone, and this was cancelled by the addition of PD168393. In the organ culture, the addition of travoprost to the medium up-regulated the expression of phospho-EGFR and phospho-ERK as well as cell proliferation, and down-regulated the expression of E-cadherin in the corneal epithelium, particularly in basal cells, whereas PD168393 reversed these effects.Conclusions: Travoprost activates epithelial cell proliferation by up-regulating an EGF-related signal in association with the suppression of E-cadherin localization in the cell-cell contact zone. Modulation of the EGF signal may be a strategy to minimize the negative impact of this mitogen on reformation of corneal barrier function during epithelial renewal.


Asunto(s)
Antihipertensivos/farmacología , Cadherinas/genética , Dinoprost , Factor de Crecimiento Epidérmico/genética , Células Epiteliales/efectos de los fármacos , Quinazolinas/farmacología , Travoprost/farmacología , Animales , Cadherinas/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Córnea/citología , Células Epiteliales/metabolismo , Receptores ErbB/antagonistas & inhibidores , Glaucoma , Humanos , Ratones Endogámicos C57BL
14.
Am J Pathol ; 188(8): 1754-1767, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29803830

RESUMEN

Myopia is a serious sight-compromising condition in which decreases in scleral biomechanical strength are associated with protease up-regulation resulting in thinning of its collagenous framework and changes in the extracellular matrix composition. Matrix metallopeptidase (MMP)-2 is one of the known proteases mediating these alterations. To determine whether MMP-2 up-regulation precedes myopia development, the direct effects of gain and loss in Mmp2 gene function were evaluated on refractive development and form deprivation myopia in mice. Four weeks after injecting an adeno-associated virus serotype 8 packaged Mmp2 overexpression vector (AAV8-Mmp2), scleral MMP-2 up-regulation was accompanied by significant myopia in a normal visual environment. In contrast, AAV8 packaging with shRNA targeting Mmp2 inhibited rises in MMP-2 expression induced by form deprivation by 54% and reduced myopia development by 23% compared with eyes injected with an irrelevant scrambled sequence. Because opposing changes in MMP-2 protein expression levels had corresponding effects on myopia progression, up-regulation of this protease contributes to inducing this condition. This notion of a cause-and-effect relationship between MMP-2 up-regulation and myopia development is supported by showing that form-deprived myopia development was attenuated by 27% in fibroblast-specific Mmp2 deletion (S100a4creMmp2fl/fl) mice relative to Cre-negative littermates (Mmp2fl/fl). Therefore, MMP-2 is a potential drug target for inhibiting myopia progression.


Asunto(s)
Modelos Animales de Enfermedad , Fibroblastos/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Miopía/patología , Esclerótica/enzimología , Animales , Progresión de la Enfermedad , Fibroblastos/enzimología , Masculino , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Miopía/enzimología , Miopía/genética , Regulación hacia Arriba
15.
Exp Eye Res ; 181: 90-97, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30633924

RESUMEN

Corneal neovascularization and inflammatory fibrosis induced by severe injury or infection leads to tissue opacification and even blindness. Transient receptor potential (TRP) channel subtypes contribute to mediating these maladaptive responses through their interactions with other receptors. TRPV1 is one of the contributing channel isoforms inducing neovascularization in an alkali burn mouse wound healing model. VEGF-A upregulation contributes to neovascularization through interaction with its cognate receptors (VEGFR). Since the TRP isoform in this tissue, TRPA1, is also involved, we determined here if one of the pathways mediating neovascularization and immune cell infiltration involve an interaction between VEGFR and TRPA1 in a cauterization corneal mouse wound healing model. Localization of TRPA1 and endothelial cell (EC) CD31 immunostaining pattern intensity determined if TRPA1 expression was EC delimited during cauterization induced angiogenesis. Quantitative RT-PCR evaluated the effects of the absence of TRPA1 function on VEGF-A and TGF-ß1 mRNA expression during this process. Macrophage infiltration increased based on rises in F4/80 antigen immunoreactivity. TRPA1 immunostaining was absent on CD31-immunostained EC cells undergoing neovascularization, but it was present on other cell type(s) adhering to EC in vivo. Absence of TRPA1 expression suppressed both stromal neovascularization and inhibited macrophage infiltration. Similarly, the increases occurring in both VEGF-A and TGF-ß1 mRNA expression levels in WT tissue were blunted in the TRPA1-/- counterpart. On the other hand, in the macrophages their levels were invariant and their infiltration was inhibited. To determine if promotion by TRPA1 of angiogenesis was dependent on its expression on other unidentified cell types, the effects were compared of pharmacological manipulation of TRPA1 activity on EC proliferation tube formation and migration. In the presence and absence of a fibroblast containing feeder layer. Neither VEGF-induced increases in human vascular endothelial cell (HUVEC) proliferation nor migration were changed by a TRPA1 antagonist HC-030031 in the absence of a feeder layer. However, on a fibroblast feeder layer this antagonist suppressed HUVEC tube formation. In conclusion, during corneal wound healing transactivation by VEGFR of TRPA1 contributes to mediating neovascularization and macrophage infiltration. Such crosstalk is possible because of close proximity between VEGFR delimited expression on EC and TRPA1 expression restricted to cell types adhering to EC.


Asunto(s)
Neovascularización de la Córnea/fisiopatología , Sustancia Propia/patología , Canal Catiónico TRPA1/deficiencia , Animales , Neovascularización de la Córnea/metabolismo , Sustancia Propia/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Canal Catiónico TRPA1/antagonistas & inhibidores , Canal Catiónico TRPA1/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/fisiología
16.
J Cell Mol Med ; 22(1): 230-240, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28782908

RESUMEN

Ectodysplasin A (Eda), a member of the tumour necrosis factor superfamily, plays an important role in ectodermal organ development. An EDA mutation underlies the most common of ectodermal dysplasias, that is X-linked hypohidrotic ectodermal dysplasia (XLHED) in humans. Even though it lacks a developmental function, the role of Eda during the postnatal stage remains elusive. In this study, we found tight junctional proteins ZO-1 and claudin-1 expression is largely reduced in epidermal, corneal and lung epithelia in Eda mutant Tabby mice at different postnatal ages. These declines are associated with tail ulceration, corneal pannus formation and lung infection. Furthermore, topical application of recombinant Eda protein markedly mitigated corneal barrier dysfunction. Using cultures of a human corneal epithelial cell line and Tabby mouse skin tissue explants, Eda up-regulated expression of ZO-1 and claudin-1 through activation of the sonic hedgehog signalling pathway. We conclude that EDA gene expression contributes to the maintenance of epithelial barrier function. Such insight may help efforts to identify novel strategies for improving management of XLHED disease manifestations in a clinical setting.


Asunto(s)
Ectodisplasinas/metabolismo , Epitelio/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Infecciones Bacterianas/patología , Córnea/microbiología , Córnea/patología , Humanos , Inflamación/patología , Pulmón/microbiología , Pulmón/patología , Ratones Endogámicos C57BL , Proteínas Recombinantes/farmacología , Piel/patología , Proteínas de Uniones Estrechas/metabolismo
17.
Cell Tissue Res ; 374(2): 329-338, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29971480

RESUMEN

The present study attempts to elucidate the role of TRPV1 cation channel receptor on primary repair in an incision-wounded mouse cornea in vivo. Previous study revealed that blocking TRPV1 suppressed myofibroblast formation and expression of transforming growth factor ß1 (TGFß1) in cultured keratocytes or ocular fibroblasts. Male C57BL/6 (wild-type; WT) mice and male C57BL/6 Trpv1-null (KO) mice incurred a full-thickness incision injury (1.8 mm in length, limbus to limbus) in the central cornea of one eye with a surgical blade under general and topical anesthesia. The injury was not sutured. On days 0, 5, and 10, the eyes were enucleated, processed for histology, immunohistochemistry, and real-time RT-PCR gene expression analysis to evaluate the effects of the loss of TRPV1 on primary healing. Electron microscopy observation was also performed to know the effect of the loss of TRPV1 on ultrastructure of keratocytes. The results showed that the loss of Trpv1 gene delayed closure of corneal stromal incision with hindered myofibroblast transdifferentiation along with declines in the expression of collagen Ia1 and TGFß1. Inflammatory cell infiltration was not affected by the loss of TRPV1. Ultrastructurally endoplasmic reticulum of TRPV1-null keratocytes was more extensively dilated as compared with WT keratocytes, suggesting an impairment of protein secretion by TRPV1-gene knockout. These results indicate that injury-related TRPV1 signal is involved in healing of stromal incision injury in a mouse cornea by selectively stimulating TGFß-induced granulation tissue formation.


Asunto(s)
Lesiones de la Cornea/patología , Canales Catiónicos TRPV/deficiencia , Cicatrización de Heridas , Animales , Córnea/patología , Córnea/ultraestructura , Lesiones de la Cornea/metabolismo , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/patología , Canales Catiónicos TRPV/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
18.
Exp Eye Res ; 134: 133-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25701684

RESUMEN

In studies on dry eye (DE) disease, an association has been identified between tear film hyperosmolarity and inflammation severity elicited through receptor-induced increases in proinflammatory cytokine and chemokine release. These immune reactions might be mediated by inflammasomes, macromolecular complexes mounted around the NLRP3 protein and can be activated by reactive oxygen species (ROS) over-generation. Hence in this study we determine whether: a) ROS activated NLRP3 inflammasomes mediate hyperosmotic stress-induced inflammation in human corneal epithelial cells (HCECs); b) the ROS-NLRP3-IL-1ß axis activation is associated with environment-induced DE. Immortalized HCECs were exposed to 500 mOsm medium in the presence and absence of a ROS inhibitor, N-acetyl-l-cysteine (NAC). HCECs transfected with NLRP3 siRNA or a negative control (NC) siRNA. Intracellular ROS was measured by fluorometric analysis using the probe 2',7'-dichlorofluorescin diacetate (DCFH-DA). Real-time PCR evaluated NLRP3, ASC, pro-caspase-1 and pro-IL-1ß mRNA levels. Western blot analysis assessed NLRP3 protein expression whereas caspase-1 activity was determined with a fluorometric assay. Bioactive IL-1ß release was assessed by ELISA. ROS production, NLRP3 inflammasome and pro-IL-1ß gene expression as well as IL-1ß secretion were also evaluated in the conjunctival epithelial cells and tear fluid samples of environment-induced DE patients and normal subjects. NAC suppressed hyperosmolarity-induced rises in ROS levels, NLRP3 inflammasome formation and activation, caspase-1 activity and IL-1ß release. On the other hand, NLRP3 siRNA knockdown inhibited hyperosmotic stress-induced NLRP3 activation, which led to ASC, pro-caspase-1 and pro-IL-1ß mRNA down-regulation followed by suppression of associated caspase-1 activity and IL-1ß secretion. In addition, in ocular surface samples of environment-induced DE patients, ROS generation, NLRP3, ASC, pro-caspase-1 and pro-IL-1ß gene expression as well as IL-1ß secretion were upregulated. Taken together, NLRP3 mediated innate immune responses triggered by rises in ROS generation induce inflammation in hyperosmotic stressed HCECs. ROS-NLRP3-IL-1ß signaling pathway might play a priming role in environment-induced DE development.


Asunto(s)
Proteínas Portadoras/metabolismo , Síndromes de Ojo Seco/metabolismo , Epitelio Corneal/metabolismo , Inflamasomas/metabolismo , Queratitis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Adulto , Western Blotting , Caspasa 1/metabolismo , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Masculino , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR , Presión Osmótica/efectos de los fármacos , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Transfección , Adulto Joven
19.
BMC Ophthalmol ; 15 Suppl 1: 157, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26818010

RESUMEN

Conjunctival and subconjunctival fibrogenesis and inflammation are sight compromising side effects that can occur subsequent to glaucoma filtration surgery. Despite initial declines in intraocular pressure resulting from increasing aqueous outflow, one of the activated responses includes marshalling of proinflammatory and pro-fibrogenic cytokine mediator entrance into the aqueous through a sclerostomy window and their release by local cells, as well as infiltrating activated immune cells. These changes induce dysregulated inflammation, edema and extracellular matrix remodeling, which occlude outflow facility. A number of therapeutic approaches are being taken to offset declines in outflow facility since the current procedure of inhibiting fibrosis with either mitomycin C (MMC) or 5-fluorouracil (5-FU) injection is nonselective. One of them entails developing a new strategy for reducing fibrosis induced by wound healing responses including myofibroblast transdifferentiation and extracellular matrix remodeling in tissue surrounding surgically created shunts. The success of this endeavor is predicated on having a good understanding of conjunctival wound healing pathobiology. In this review, we discuss the roles of inappropriately activated growth factor and cytokine receptor linked signaling cascades inducing conjunctival fibrosis/scarring during post-glaucoma surgery wound healing. Such insight may identify drug targets for blocking fibrogenic signaling and excessive fibrosis which reduces rises in outflow facility resulting from glaucoma filtration surgery.


Asunto(s)
Cirugía Filtrante/efectos adversos , Glaucoma/cirugía , Cicatrización de Heridas/fisiología , Enfermedades de la Conjuntiva/fisiopatología , Citocinas/metabolismo , Fibrosis/fisiopatología , Glaucoma/fisiopatología , Humanos , Presión Intraocular/fisiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/metabolismo , Complicaciones Posoperatorias/fisiopatología , Trabeculectomía/métodos
20.
BMC Ophthalmol ; 15 Suppl 1: 153, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26818117

RESUMEN

Transient receptor potential (TRP) channels sense and transduce environmental stimuli into Ca(2+) transients that in turn induce responses essential for cell function and adaptation. These non-selective channels with variable Ca(2+) selectivity are grouped into seven different subfamilies containing 28 subtypes based on differences in amino acid sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells where they affect a host of stress-induced regulatory responses essential for normal vision maintenance. This article reviews our current knowledge about the expression, function and regulation of TRPs in different eye tissues. We also describe how under certain conditions TRP activation can induce responses that are maladaptive to ocular function. Furthermore, the possibility of an association between TRP mutations and disease is considered. These findings contribute to evidence suggesting that drug targeting TRP channels may be of therapeutic benefit in a clinical setting. We point out issues that must be more extensively addressed before it will be possible to decide with certainty that this is a realistic endeavor. Another possible upshot of future studies is that disease process progression can be better evaluated by profiling changes in tissue specific functional TRP subtype activity as well as their gene and protein expression.


Asunto(s)
Oftalmopatías , Fenómenos Fisiológicos Oculares , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Oftalmopatías/metabolismo , Oftalmopatías/fisiopatología , Humanos , Canales de Potencial de Receptor Transitorio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA