Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Chemistry ; 29(5): e202202934, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36321640

RESUMEN

In the biomimetic context, many studies have evidenced the importance of the 1st and 2nd coordination sphere of a metal ion for controlling its properties. Here, we propose to evaluate a yet poorly explored aspect, which is the nature of the cavity that surrounds the metal labile site. Three calix[6]arene-based aza-ligands are compared, that differ only by the nature of cavity walls, anisole, phenol or quinone (LOMe , LOH and LQ ). Monitoring ligand exchange of their ZnII complexes evidenced important differences in the metal ion relative affinities for nitriles, halides or carboxylates. It also showed a possible sharp kinetic control on both, metal ion binding and ligand exchange. Hence, this study supports the observations reported on biological systems, highlighting that the substitution of an amino-acid residue of the enzyme active site, at remote distance of the metal ion, can have strong impacts on metal ion lability, substrate/product exchange or selectivity.


Asunto(s)
Calixarenos , Fenol , Ligandos , Biomimética , Metales , Fenoles/química , Calixarenos/química , Quinonas
2.
Org Biomol Chem ; 21(6): 1172-1180, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36504236

RESUMEN

A novel ZnII funnel complex that presents three phenol functions within a calix[6]arene macrocycle is described. Host-guest studies, monitored by 1H NMR spectroscopy, evaluate the impact of the replacement of three anisole moieties present in a previously described system with phenols. It is now shown that the dicationic complex is responsive to anions, whereas deprotonation of one phenol unit completely inhibits any hosting response. These properties, combined with those of the corresponding protonated ligand, allow us to obtain different molecular switches, and one of them shows guest embedment changes between four different host states, thus giving rise to a rare case of a triple molecular switch.

3.
Chemistry ; 27(1): 434-443, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33048410

RESUMEN

The design of biomimetic models of metalloenzymes needs to take into account many factors and is therefore a challenging task. We propose in this work an original strategy to control the second coordination sphere of a metal centre and its distal environment. A biomimetic complex, reproducing the first coordination sphere, is encapsulated in a self-assembled hydrogen-bonded capsule. The cationic complex is co-encapsulated with its counter-anion or with solvent molecules. The capsule is dynamic, allowing a fast in/out exchange of the co-encapsulated species. It also provides both a hydrogen-bonding site in the second coordination sphere and a source of proton as it can be deprotonated in the presence of the complex, providing a globally neutral host-guest assembly. This simple and broad scope strategy is unprecedented in biomimetic studies. The approach appears to be a very promising method for the stabilisation of reactive species and for the study of their reactivity.


Asunto(s)
Materiales Biomiméticos , Complejos de Coordinación , Aniones , Enlace de Hidrógeno
4.
Chemistry ; 27(55): 13730-13738, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34288166

RESUMEN

In this study, the ligand exchange mechanism at a biomimetic ZnII centre, embedded in a pocket mimicking the possible constrains induced by a proteic structure, is explored. The residence time of different guest ligands (dimethylformamide, acetonitrile and ethanol) inside the cavity of a calix[6]arene-based tris(imidazole) tetrahedral zinc complex was probed using 1D EXchange SpectroscopY NMR experiments. A strong dependence of residence time on water content was observed with no exchange occurring under anhydrous conditions, even in the presence of a large excess of guest ligand. These results advocate for an associative exchange mechanism involving the transient exo-coordination of a water molecule, giving rise to 5-coordinate ZnII intermediates, and inversion of the pyramid at the ZnII centre. Theoretical modelling by DFT confirmed that the associative mechanism is at stake. These results are particularly relevant in the context of the understanding of kinetic stability/lability in Zn proteins and highlight the key role that a single water molecule can play in catalysing ligand exchange and controlling the lability of ZnII in proteins.


Asunto(s)
Calixarenos , Biomimética , Ligandos , Agua , Zinc
5.
Chemistry ; 27(55): 13663, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34529309

RESUMEN

Invited for the cover of this issue are Kristin Bartik, Olivia Reinaud and co-workers at the Université libre de Bruxelles and Université Paris Descartes. The image depicts a Zn protein and highlights the role that a single water molecule can play in catalysing ligand exchange. Read the full text of the article at 10.1002/chem.202102184.


Asunto(s)
Calixarenos , Biomimética , Humanos , Ligandos , Agua , Zinc
6.
J Org Chem ; 86(17): 12075-12083, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34409837

RESUMEN

A molecular capsule based on a calix[6]arene core closed at the small rim by a three-point coordinated metal ion and at the large rim by a three-point covalent capping is described. It is derived from a trisimidazole funnel complex capped by a trenamide unit that prevents in/out exchange of guest molecules through the large rim. A detailed comparative study with three different calixarenes provides a unique opportunity for (i) comparing the binding ability of two different coordination sites in well three-dimensional (3D)-structured macrocyclic receptors and (ii) evaluating the impact of a covalent closing of one rim of a funnel receptor while the other rim is closed by weaker coordination bonds. Indeed, this study allowed for highlighting various interesting new features. It is first shown that the trenamide site can bind a metal ion such as Zn2+ by itself. This involves a 1:1 coordination of the metal ion to the three carbonyl groups of the amide functions, which undergo trans-to-cis isomerization and are partially embedded in the calix core. When the trisimidazole core is present, the Zn2+ ion preferentially binds at the small rim, thus closing the cavity. Guest ligand exchange must then occur through a decoordination/recoordination process of the metal ion. The modification and rigidification of the calixarene conformation induced by the large rim capping strengthen the metal ion coordination at the small rim. This also leads to a selective metallo-receptor that readily binds EtNH2 under conditions where PrNH2 is not recognized at all. The increased rigidity of the receptor, however, weakens the host-guest interactions, precluding important induced-fit behaviors that are at work in the parent, large rim opened, funnel complex.


Asunto(s)
Calixarenos , Modelos Moleculares , Fenoles , Zinc
7.
Chemphyschem ; 21(1): 83-89, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31659835

RESUMEN

The straightforward synthesis of a new hexahomotrioxacalix[3]arene-based ligand capped by a tren subunit was developed and the binding properties of the corresponding zinc complex were explored by NMR spectroscopy. Similarly to the closely related calix[6]tren-based systems, the homooxacalixarene core ensures the mononuclearity of the zinc complex and the metal center displays a labile coordination site for exogenous guests. However, very different host-guest properties were observed: i) in CDCl3 , the zinc complex strongly binds a water molecule and is reluctant to recognize other neutral guests, ii) in CD3 CN, the exo-coordination of anions prevails. Thus, in strong contrast to the calix[6]tren-based systems, the coordination of neutral guests that thread through the small rim and fill the polyaromatic cavity was not observed. This unique behaviour is likely due to the fact that the 18-membered ethereal macrocycle is too small to let a molecule threading through it. This work illustrates the key role played by the second coordination sphere in the binding properties of metal complexes.

8.
Org Biomol Chem ; 18(19): 3624-3637, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32154553

RESUMEN

Surface modification represents an active field of research that finds applications, amongst others, in the development of medical devices, sensors and biosensors, anti-biofouling materials, self-cleaning surfaces, surfaces with controlled wettability, corrosion resistance, heterogeneous catalysis and microelectronics. For some applications, surface functionalization with a nanometric-size monolayer is desired. In this review, efforts to covalently functionalize a wide array of surfaces with calixarenes bearing diazonium groups are described. More specifically, methodologies to obtain monolayers of calix[4 or 6]arene derivatives on conductive, semi-conductive or insulating surfaces as well as on nanoparticles are presented. The main advantages of this general surface modification strategy (i.e. formation of true monolayers that can be post-functionalized, high robustness and control over the composition of the calixarene-based coating) and its current scope of applications and future challenges are discussed.

9.
Chemistry ; 24(68): 17964-17974, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30334290

RESUMEN

Molecular recognition in water is an important topic, but a challenging task due to the very competitive nature of the medium. The focus of this study is the comparison of two different strategies for the water solubilization of a biomimetic metallo-receptor based on a poly(imidazole) resorcinarene core. The first relies on a new synthetic path for the introduction of hydrophilic substituents on the receptor, at a remote distance from the coordination site. The second involves the incorporation of the organosoluble metallo-receptor into dodecylphosphocholine (DPC) micelles, which mimic the proteic surrounding of the active site of metallo-enzymes. The resorcinarene ligand can be transferred into water through both strategies, in which it binds ZnII over a wide pH window. Quite surprisingly, very similar metal ion affinities, pH responses, and recognition properties were observed with both strategies. The systems behave as remarkable receptors for small organic anions in water at near-physiological pH. These results show that, provided the biomimetic site is well structured and presents a recognition pocket, the micellar environment has very little impact on either metal ion binding or guest hosting. Hence, micellar incorporation represents an easy alternative to difficult synthetic work, even for the binding of charged species (metal cations or anions), which opens new perspectives for molecular recognition in water, whether for sensing, transport, or catalysis.

10.
Inorg Chem ; 57(7): 3646-3655, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29314855

RESUMEN

A water-soluble calix[6]arene-based azacryptand was synthesized. The corresponding tren [tris(2-aminoethyl)amine] cap grafted at the small rim coordinates strongly a copper(II) ion over a wide range of pH. The host-guest properties of the complex were explored by EPR spectroscopy. Due to second coordination sphere effects and the hydrophobic effect ascribed to the calixarene cavity, this funnel complex selectively binds neutral molecules (alcohols, nitriles, amines) versus anions in water near physiological pH. Among the coordinating guests, hydrophobic primary amines are preferentially recognized thanks to the combined effect of the better metal-ligand interaction and hydrogen bonding to the oxygen atoms present at the small rim. Hence, this Cu(II) calix[6]arene-based funnel complex behaves as a sensitive and selective EPR probe for primary amines, including biologically important molecules such as tyramine and tryptamine, in water, over a large pH window.

11.
Chemistry ; 23(36): 8669-8677, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28370654

RESUMEN

The association of host-guest and coordination chemistry was used to develop a fluorescent molecular sensor. A calix[6]arene bearing three imidazole arms at the small rim and three quinoline fluorophores at the large rim was synthesized and characterized. A two-step coordination sequence was observed upon addition of ZnII . The first ZnII center binds the tris-imidazole small rim site, leading only to a small perturbation of the fluorescence. In contrast, a large bathochromic shift is observed upon binding of the second ZnII center at the large rim as a result of the direct interaction of ZnII with the quinoline fluorophores. The system acts as a selective receptor for primary amines. Host-guest adduct formation could be identified by a shift and enhancement of the fluorescence emission that is dependent on the length and shape of the primary amine. This system constitutes a fluorescent reporter with a selective response among primary amines.

12.
Chemistry ; 23(12): 2894-2906, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28128474

RESUMEN

A heteroditopic ligand associated with a calix[6]arene scaffold bearing a tris(imidazole) coordinating site at its small rim and an amine/pyridine ligand at its large rim has been prepared, and its regioselective coordination to ZnII at the small rim and FeII in the amine/pyridine ligand has been achieved. The heterodinuclear complex obtained displays an overall cone conformation capped by the tris(imidazole)ZnII moiety and bears a non-heme FeII complex at its base. Each of the metal centers exhibits one labile position, allowing the coordination inside the cavity of a guest alkylamine at ZnII and the generation of reaction intermediates (FeIII (OOH) and FeIV O) at the large rim. A dependence between the chain length of the encapsulated alkylamine and the distribution of FeIII (OOH) intermediates and FeIII (OMe) is observed. In addition, it is shown that the generation of the FeIV O intermediate is enhanced by addition of the alkylamine guest. Hence, this supramolecular system gathers the three levels of reactivity control encountered in oxidoreductases: i) control of the FeII redox properties through its first coordination sphere, allowing us to generate high valent reactive species; ii) control of guest binding through a hydrophobic funnel that drives its alkyl chain next to the reactive iron complex, thus mimicking the binding pocket of natural systems; iii) guest-modulated reactivity of the FeII center towards oxidants.

13.
Inorg Chem ; 56(18): 10971-10983, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28853565

RESUMEN

A new "two-story" calix[6]arene-based ligand was synthesized, and its coordination chemistry was explored. It presents a tren cap connected to the calixarene small rim through three amido spacers. X-ray diffraction studies of its metal complexes revealed a six-coordinate ZnII complex with all of the carbonyl groups of the amido arms bound and a five-coordinate CuII complex with only one amido arm bound. These dicationic complexes were poorly responsive toward exogenous neutral donors, but the amido arms were readily displaced by small anions or deprotonated with a base to give the corresponding monocationic complexes. Cyclic voltammetry in various solvents showed a reversible wave for the CuII/CuI couple at very negative potentials, denoting an electron-rich environment. The reversibility of the system was attributed to the amido arms, which can coordinate the metal center in both its +II and +I redox states. The reversibility was lost upon anion binding to Cu. Upon exposure of the CuI complex to O2 at low temperature, a green species was obtained with a UV-vis signature typical of an end-on superoxide CuII complex. Such a species was proposed to be responsible for oxygen insertion reactions onto the ligand according to the unusual and selective four-electron oxidative pathway previously described with a "one-story" calix[6]tren ligand.

14.
J Am Chem Soc ; 138(39): 12841-12853, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27593499

RESUMEN

The immobilization of a copper calix[6]azacryptand funnel complex on gold-modified electrodes is reported. Two different methodologies are described. One is based on alkyne-terminated thiol self-assembled monolayers. The other relies on the electrografting of a calix[4]arene platform bearing diazonium functionalities at its large rim and carboxylic functions at its small rim, which is post-functionalized with alkyne moieties. In both cases, the CuAAC electroclick methodology proved to be the method of choice for grafting the calix[6]azacryptand onto the monolayers. The surface-immobilized complex was fully characterized by surface spectroscopies and electrochemistry in organic and aqueous solvents. The Cu complex displays a well-defined quasi-reversible system in cyclic voltammetry associated with the Cu(II)/Cu(I) redox process. Remarkably, this redox process triggers a powerful selective detection of primary alkylamines in water at a micromolar level, based on a cavitary recognition process.

15.
Acc Chem Res ; 48(7): 2097-106, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26103534

RESUMEN

Supramolecular bioinorganic chemistry is a natural evolution in biomimetic metallic systems since it constitutes a further degree of complexity in modeling. The traditional approach consisting of mimicking the first coordination sphere of metal sites proved to be very efficient, because valuable data are extracted from these examples to gain insight in natural systems mechanisms. But it does not reproduce several specific aspects of enzymes that can be mimicked by the implementation of a cavity embedding the labile active site and thus controlling the properties of the metal ion by noncovalent interactions. This Account reports on a strategy aimed at reproducing some supramolecular aspects encountered in the natural systems. The cavity complexes described herein display a coordination site constructed on a macrocycle. Thanks to a careful design of the cavity-based ligands, complexes orienting their labile site specifically toward the inside of the macrocycle were obtained. The supramolecular systems are based on the flexible calix[6]arene core that surrounds the metal ion labile site, thereby constraining exogenous molecules to pass through the conic funnel to reach the metal center. Such an architecture confers to the metal ion very unusual properties and behaviors, which in many aspects are biologically relevant. Three generations of calix[6]-based ligands are presented and discussed in the context of modeling the monocopper sites encountered in some enzymes. A wide range of phenomena are highlighted such as the impact that the size and shape of the access channel to the metal center have on the selectivity and rate of the binding process, the possible remote control of the electronics through small modifications operated on the cavity edges, induced-fit behavior associated with host-guest association (shoe-tree effect) that affects the redox properties of the metal ion and the electron exchange pathway, consequences of forbidden associative ligand exchange allowing a redox switch to drive an "antithermodynamic" ligand exchange, drastic effects of the full control of the second coordination sphere, and dioxygen activation in a confined chamber conducted to a selective and unusual four-electron redox process. All these findings bring new clues for better understanding the control exerted by the proteic environment on a metal center, allow the identification of new reaction pathways, and lead to new proposals for enzymatic catalytic cycle (such as the formation of an alkylhydroperoxide intermediate for mononuclear Cu-hydroxylases). The supramolecular systems may also be exploited for designing highly selective and sensitive probes for molecules of particular function and shape or to design new selective catalysts.


Asunto(s)
Calixarenos/metabolismo , Cobre/metabolismo , Oxigenasas de Función Mixta/metabolismo , Compuestos Organometálicos/metabolismo , Fenoles/metabolismo , Calixarenos/química , Dominio Catalítico , Cobre/química , Ligandos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Oxigenasas de Función Mixta/química , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Fenoles/química
16.
Chemistry ; 22(14): 4855-62, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26916610

RESUMEN

The Huisgen thermal reaction between an organic azide and an acetylene was employed for the selective monofunctionalization of a X6 -azacryptand ligand bearing a tren coordinating unit [X6 stands for calix[6]arene and tren for tris(2-aminoethyl)amine]. Supramolecular assistance, originating from the formation of a host-guest inclusion complex between the reactants, greatly accelerates the reaction while self-inhibition affords a remarkable selectivity. The new ligand possesses a single amino-leg appended at the large rim of the calixarene core and the corresponding Zn(2+) complex was characterized both in solution and in the solid state. The coordination of Zn(2+) not only involves the tren cap but also the introverted amino-leg, which locks the metal ion in the cavity. Compared with the parent ligand deprived of the amino-leg, the affinity of the new monofunctionalized X6 tren ligand 6 for Zn(2+) is found to have a 10-fold increase in DMSO, which is a very competitive solvent, and with an enhancement of at least three orders of magnitude in CDCl3 /CD3 OD (1:1, v/v). In strong contrast with the fast binding kinetics, decoordination of Zn(2+) as well as transmetallation appeared to be very slow processes. The monofunctionalized X6 tren ligand 6 fully protects the metal ion from the external medium thanks to the combination of a cavity and a closed coordination sphere, leading to greater thermodynamic and kinetic stabilities.

17.
Org Biomol Chem ; 14(6): 1950-7, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26751614

RESUMEN

Cavity-based metal complexes can find many applications notably in the fields of catalysis and biomimicry. In this context, it was shown that metal complexes of calix[6]arenes bearing three aza-coordinating arms at the small rim provide excellent structural models of the poly-imidazole sites found in the active site of many metallo-enzymes. All these N-donor ligands were synthesized from the 1,3,5-tris-methoxy-p-tBu-calix[6]arene platform, which presents some limitations in terms of functionalization. Therefore, there is a need for the development of new calix[6]arene-based building-blocks selectively protected at the small rim. Herein we describe the regioselective one step synthesis of two calix[6]arenes decorated with triflate groups, i.e. X6H4Tf2 and X6H3Tf3, from the parent calix[6]arene X6H6. It is shown that the triflate groups can either act as protecting or deactivating groups, allowing the elaboration of sophisticated calixarene-based systems selectively functionalized at the large and/or at the small rim. In addition, X6H3Tf3 is functionalized on the A, B, and D rings and thus gives access to inherently chiral compounds, as demonstrated by the synthesis of a rare example of inherently chiral cavity-based metal complex.

18.
Chem Soc Rev ; 44(2): 467-89, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25319612

RESUMEN

The design of biomimetic complexes for the modeling of metallo-enzyme active sites is a fruitful strategy for obtaining fundamental information and a better understanding of the molecular mechanisms at work in Nature's chemistry. The classical strategy for modeling metallo-sites relies on the synthesis of metal complexes with polydentate ligands that mimic the coordination environment encountered in the natural systems. However, it is well recognized that metal ion embedment in the proteic cavity has key roles not only in the recognition events but also in generating transient species and directing their reactivity. Hence, this review focuses on an important aspect common to enzymes, which is the presence of a pocket surrounding the metal ion reactive sites. Through selected examples, the following points are stressed: (i) the design of biomimetic cavity-based complexes, (ii) their corresponding host-guest chemistry, with a special focus on problems related to orientation and exchange mechanisms of the ligand within the host, (iii) cavity effects on the metal ion binding properties, including 1st, 2nd, and 3rd coordination spheres and hydrophobic effects and finally (iv) the impact these factors have on the reactivity of embedded metal ions. Important perspectives lie in the use of this knowledge for the development of selective and sensitive probes, new reactions, and green and efficient catalysts with bio-inspired systems.


Asunto(s)
Biomimética , Complejos de Coordinación/química , Calixarenos/química , Cationes , Ciclodextrinas/química , Enzimas/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Molecular , Fenoles/química
19.
J Org Chem ; 80(10): 5084-91, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25874593

RESUMEN

The selective demethylation of methoxy groups of several multifunctionalized 1,3,5-trimethoxycalix[6]arene-based receptors has been achieved. It is shown in this study that the best reagent is trimethylsilyl iodide (TMSI) and that the conformation adopted by the calixarene core is crucial for both the selectivity and the efficiency of the process. A key feature appears to be the "in" or "out" orientation of the methoxy substituents relative to the macrocyclic cavity. If projected inward, the reaction is slow and not selective. If projected outward, the reaction is fast and selective. A strategy that consists of exploiting the host-guest properties of the receptors to change their conformation and to permit their selective demethylation has been developed. Four cases of such a supramolecular assistance are reported, demonstrating the efficiency of the strategy. Such an allosteric control is highly reminiscent of biological processes allowing selective transformation of multifunctional molecules.

20.
Org Biomol Chem ; 13(10): 2849-65, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25608497

RESUMEN

Supramolecular chemistry in water is a very challenging research area. In biology, water is the universal solvent where transition metal ions play major roles in molecular recognition and catalysis. In enzymes, it participates in substrate binding and/or activation in the heart of a pocket defined by the folded protein. The association of a hydrophobic cavity with a transition metal ion is thus a very appealing strategy for controlling the metal ion properties in the very competitive water solvent. Various systems based on intrinsically water-soluble macrocyclic structures such as cyclodextrins, cucurbituryls, and metallo-cages have been reported. Others use calixarenes and resorcinarenes functionalized with hydrophilic substituents. One approach for connecting a metal complex to these cavities is to graft a ligand for metal ion binding at their edge. Early work with cyclodextrins has shown Michaelis-Menten like catalysis displaying enhanced kinetics and substrate-selectivity. Remarkable examples of regio- and stereo-selective transformation of substrates have been reported as well. Dynamic two-phase systems for transition metal catalysis have also been developed. They rely on either water-transfer of the metal complex through ligand embedment or synergistic coordination of a metal ion and substrate hosting. Another strategy consists in using metallo-cages, which provide a well-defined hydrophobic space, to stabilize metal complexes in water. When the cages can host simultaneously a substrate and a reactive metal complex, size- and regio-selective catalysis was obtained. Finally, construction of a polydentate coordination site closely interlocked with a calixarene or resorcinarene macrocycle has been shown to be a very fruitful strategy for obtaining metal complexes with remarkable hosting properties. For each of these systems, the synergism resulting from the biomimetic association of a hydrophobic cavity and a metal ion is discussed within the objective of developing new tools for either selective molecular recognition (with analytical perspectives) or performant catalysis, in water.


Asunto(s)
Aminas/química , Iones/química , Metales/química , Elementos de Transición/química , Agua/química , Catálisis , Complejos de Coordinación , Ciclodextrinas/química , Dimerización , Fluoruros/química , Cinética , Ligandos , Paladio/química , Procesos Fotoquímicos , Conformación Proteica , Pliegue de Proteína , Solubilidad , Solventes/química , Especificidad por Sustrato , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA