Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 576(7787): 416-422, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853084

RESUMEN

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

2.
Phys Rev Lett ; 129(24): 246404, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563241

RESUMEN

The electronic structure of Weyl semimetals features Berry flux monopoles in the bulk and Fermi arcs at the surface. While angle-resolved photoelectron spectroscopy (ARPES) is successfully used to map the bulk and surface bands, it remains a challenge to explicitly resolve and pinpoint these topological features. Here we combine state-of-the-art photoemission theory and experiments over a wide range of excitation energies for the Weyl semimetals TaAs and TaP. Our results show that simple surface-band-counting schemes, proposed previously to identify nonzero Chern numbers, are ambiguous due to pronounced momentum-dependent spectral weight variations and the pronounced surface-bulk hybridization. Instead, our findings indicate that dichroic ARPES provides an improved approach to identify Fermi arcs but requires an accurate description of the photoelectron final state.

3.
Phys Rev Lett ; 126(13): 136401, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33861118

RESUMEN

Samarium hexaboride is a candidate for the topological Kondo insulator state, in which Kondo coherence is predicted to give rise to an insulating gap spanned by topological surface states. Here we investigate the surface and bulk electronic properties of magnetically alloyed Sm_{1-x}M_{x}B_{6} (M=Ce, Eu), using angle-resolved photoemission spectroscopy and complementary characterization techniques. Remarkably, topologically nontrivial bulk and surface band structures are found to persist in highly modified samples with up to 30% Sm substitution and with an antiferromagnetic ground state in the case of Eu doping. The results are interpreted in terms of a hierarchy of energy scales, in which surface state emergence is linked to the formation of a direct Kondo gap, while low-temperature transport trends depend on the indirect gap.

4.
Phys Rev Lett ; 126(17): 176403, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988442

RESUMEN

Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi_{4}Te_{7} and MnBi_{6}Te_{10}, the n=1 and 2 members of a modular (Bi_{2}Te_{3})_{n}(MnBi_{2}Te_{4}) series, which have attracted recent interest as intrinsic magnetic topological insulators. Combining circular dichroic, spin-resolved and photon-energy-dependent ARPES measurements with calculations based on density functional theory, we unveil complex momentum-dependent orbital and spin textures in the surface electronic structure and disentangle topological from trivial surface bands. We find that the Dirac-cone dispersion of the topologial surface state is strongly perturbed by hybridization with valence-band states for Bi_{2}Te_{3}-terminated surfaces but remains preserved for MnBi_{2}Te_{4}-terminated surfaces. Our results firmly establish the topologically nontrivial nature of these magnetic van der Waals materials and indicate that the possibility of realizing a quantized anomalous Hall conductivity depends on surface termination.

5.
Phys Chem Chem Phys ; 21(24): 13207-13214, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31179459

RESUMEN

The local valence orbital structure of solid glycine, diglycine, and triglycine is studied using soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS) maps, and spectra calculations based on density-functional theory. Using a building block approach, the contributions of the different functional groups of the peptides are separated. Cuts through the RIXS maps furthermore allow monitoring selective excitations of the amino and peptide functional units, leading to a modification of the currently established assignment of spectral contributions. The results thus paint a new-and-improved picture of the peptide bond, enhance the understanding of larger molecules with peptide bonds, and simplify the investigation of such molecules in aqueous environment.


Asunto(s)
Modelos Químicos , Péptidos/química , Dispersión Dinámica de Luz , Electrones , Glicina/química , Glicilglicina/química , Oligopéptidos/química , Teoría Cuántica , Agua/química , Difracción de Rayos X
6.
Nat Mater ; 16(6): 615-621, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28272500

RESUMEN

We performed a full mapping of the bulk electronic structure including the Fermi surface and Fermi-velocity distribution vF(kF) of tungsten. The 4D spectral function ρ(EB; k) in the entire bulk Brillouin zone and 6 eV binding-energy (EB) interval was acquired in ∼3 h thanks to a new multidimensional photoemission data-recording technique (combining full-field k-microscopy with time-of-flight parallel energy recording) and the high brilliance of the soft X-rays used. A direct comparison of bulk and surface spectral functions (taken at low photon energies) reveals a time-reversal-invariant surface state in a local bandgap in the (110)-projected bulk band structure. The surface state connects hole and electron pockets that would otherwise be separated by an indirect local bandgap. We confirmed its Dirac-like spin texture by spin-filtered momentum imaging. The measured 4D data array enables extraction of the 3D dispersion of all bands, all energy isosurfaces, electron velocities, hole or electron conductivity, effective mass and inner potential by simple algorithms without approximations. The high-Z bcc metals with large spin-orbit-induced bandgaps are discussed as candidates for topologically non-trivial surface states.

7.
Phys Chem Chem Phys ; 20(12): 8302-8310, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29532819

RESUMEN

The occupied and unoccupied electronic structure of imidazole (C3N2H4) and imidazolium (C3N2H5+) in aqueous solutions is studied by X-ray emission spectroscopy (XES) and resonant inelastic soft X-ray scattering (RIXS). Both systems show distinct RIXS fingerprints with strong resonant effects. A comparison with calculated X-ray emission spectra of isolated imidazole and imidazolium suggests only a small influence of hydrogen bonding in the aqueous solution on the electronic structure of imidazole and imidazolium, and allows the attribution of specific spectral features to the non-equivalent nitrogen and carbon atoms in the molecules. In the case of nitrogen, this can also be achieved by site-selective resonant excitation. Furthermore, we find spectator shifts and symmetry selectivity in the RIXS spectra, as well as indications for rapid proton dynamics on the femtosecond timescale of the RIXS process, and derive the HOMO-LUMO gaps for the two molecules in aqueous solution.

8.
Phys Rev Lett ; 119(10): 106401, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949177

RESUMEN

A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been difficult to assess in these systems. We present experiments for the spin-orbit split states in a Bi-Ag surface alloy showing that the alteration of the final state with energy may cause a complete reversal of the photoelectron spin polarization. We explain the effect on the basis of ab initio one-step photoemission theory and describe how it originates from linear dichroism in the angular distribution of photoelectrons. Our analysis shows that the modulated photoelectron spin polarization reflects the intrinsic spin density of the surface state being sampled differently depending on the final state, and it indicates linear dichroism as a natural probe of spin-orbit coupling at surfaces.

9.
Phys Rev Lett ; 117(18): 183001, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27834988

RESUMEN

Angle-resolved photoemission spectroscopy has been developed to a very high accuracy. However, effects that depend sensitively on the state of the emitted photoelectron were so far hard to compute for real molecules. We here show that the real-time propagation approach to time-dependent density functional theory allows us to obtain final-state effects consistently from first principles and with an accuracy that allows for the interpretation of experimental data. In a combined theoretical and experimental study we demonstrate that the approach captures three hallmark effects that are beyond the final-state plane-wave approximation: emission perpendicular to the light polarization, circular dichroism in the photoelectron angular distribution, and a pronounced energy dependence of the photoemission intensity.

10.
Phys Rev Lett ; 116(14): 147601, 2016 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-27104726

RESUMEN

Electron-phonon coupling is one of the most fundamental effects in condensed matter physics. We here demonstrate that photoelectron momentum mapping can reveal and visualize the coupling between specific vibrational modes and electronic excitations. When imaging molecular orbitals with high energy resolution, the intensity patterns of photoelectrons of the vibronic sidebands of molecular states show characteristic changes due to the distortion of the molecular frame in the vibronically excited state. By comparison to simulations, an assignment of specific vibronic modes is possible, thus providing unique information on the coupling between electronic and vibronic excitation.

11.
Phys Rev Lett ; 116(11): 116401, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27035312

RESUMEN

To finally resolve the controversial issue of whether or not the electronic structure of YbB_{6} is nontrivially topological, we have made a combined study using angle-resolved photoemission spectroscopy (ARPES) of the nonpolar (110) surface and density functional theory (DFT). The flat-band conditions of the (110) ARPES avoid the strong band bending effects of the polar (001) surface and definitively show that YbB_{6} has a topologically trivial B 2p-Yb 5d semiconductor band gap of ∼0.3 eV. Accurate determination of the low energy band topology in DFT requires the use of a modified Becke-Johnson exchange potential incorporating spin-orbit coupling and an on-site Yb 4f Coulomb interaction U as large as 7 eV. The DFT result, confirmed by a more precise GW band calculation, is similar to that of a small gap non-Kondo nontopological semiconductor. Additionally, the pressure-dependent electronic structure of YbB_{6} is investigated theoretically and found to transform into a p-d overlap semimetal with small Yb mixed valency.

12.
J Phys Chem A ; 120(14): 2260-7, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27003748

RESUMEN

The electronic structure of gas-phase methanol molecules (H3COH, H3COD, and D3COD) at atmospheric pressure was investigated using resonant inelastic soft X-ray scattering (RIXS) at the O K and C K edges. We observe strong changes of the relative emission intensities of all valence orbitals as a function of excitation energy, which can be related to the symmetries of the involved orbitals causing an angularly anisotropic RIXS intensity. Furthermore, all observed emission lines are subject to strong spectator shifts of up to -0.9 eV at the O K edge and up to -0.3 eV at the C K edge. At the lowest O K resonance, we find clear evidence for dissociation of the methanol molecule on the time scale of the RIXS process, which is illustrated by comparing X-ray emission spectra of regular and deuterated methanol.

13.
Phys Rev Lett ; 112(22): 226402, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24949780

RESUMEN

Typical Kondo insulators (KIs) can have a nontrivial Z_{2} topology because the energy gap opens at the Fermi energy (E_{F}) by a hybridization between odd- and even-parity bands. SmB_{6} deviates from such KI behavior, and it has been unclear how the insulating phase occurs. Here, we demonstrate that charge fluctuations are the origin of the topological insulating phase in SmB_{6}. Our angle-resolved photoemission spectroscopy results reveal that with decreasing temperature the bottom of the d-f hybridized band at the X[over ¯] point, which is predicted to have odd parity and is required for a topological phase, gradually shifts from below to above E_{F}. We conclude that SmB_{6} is a charge-fluctuating topological insulator.

14.
Phys Rev Lett ; 111(4): 048102, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23931410

RESUMEN

We study the core hole-electron correlation in coherently coupled molecules by energy dispersive near edge x-ray absorption fine-structure spectroscopy. In a transient phase, which exists during the transition between two bulk arrangements, 1,4,5,8-naphthalene-tetracarboxylicacid-dianhydride multilayer films exhibit peculiar changes of the line shape and energy position of the x-ray absorption signal at the C K-edge with respect to the bulk and gas phase spectra. By a comparison to a theoretical model based on a coupling of transition dipoles, which is established for optical absorption, we demonstrate that the observed spectroscopic differences can be explained by an intermolecular delocalized core hole-electron pair. By applying this model we can furthermore quantify the coherence length of the delocalized core exciton.

15.
Phys Rev Lett ; 110(15): 156404, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25167291

RESUMEN

We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Γ, Z, and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature hidden-order (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands related to the Kondo-lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase. Strikingly, we find that while the HO induces pronounced changes at Γ and Z, the hybridization gap at X does not change, indicating that the hidden-order parameter is anisotropic. Furthermore, at the Γ and Z points, we observe the opening of a gap in momentum in the HO state, and show that the associated electronic structure results from the hybridization of a light electron band with the Kondo-lattice bands characterizing the paramagnetic state.

16.
J Chem Phys ; 138(3): 034306, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23343275

RESUMEN

Resonant inelastic soft x-ray scattering (RIXS) was used to study the electronic structure of solid cysteine films. A RIXS map approach, i.e., plotting the x-ray emission intensity as a function of excitation and emission energy, allows us to separate the contributions of the three chemically non-equivalent carbon atoms in cysteine. In particular, we can identify orbitals localized near the photoexcited atoms, as well as orbitals that are delocalized over the entire molecule.


Asunto(s)
Carbono/química , Cisteína/química , Dispersión de Radiación , Rayos X
17.
Phys Rev Lett ; 107(19): 193002, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22181601

RESUMEN

The experimental imaging of electronic orbitals has allowed one to gain a fascinating picture of quantum effects. We here show that the energetically high-lying orbitals that are accessible to experimental visualization in general differ, depending on which approach is used to calculate the orbitals. Therefore, orbital imaging faces the fundamental question of which orbitals are the ones that are visualized. Combining angular-resolved photoemission experiments with first-principles calculations, we show that the orbitals from self-interaction-free Kohn-Sham density functional theory are the ones best suited for the orbital-based interpretation of photoemission.

18.
Phys Rev Lett ; 106(18): 186407, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21635113

RESUMEN

We report on the results of a high-resolution angle-resolved photoemission study on the ordered surface alloy CePt(5). The temperature dependence of the spectra show the formation of the coherent low-energy heavy-fermion band near the Fermi level. These experimental data are supported by a multiband model calculation in the framework of the dynamical mean-field theory.

19.
J Chem Phys ; 135(10): 104705, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21932916

RESUMEN

We have employed a unique spectroscopic approach, a resonant inelastic soft x-ray scattering (RIXS) map, to identify and separate electron-hole correlation effects in core-level spectroscopy. With this approach, we are able to derive a comprehensive picture of the electronic structure, separating ground state properties (such as the HOMO-LUMO separation) from excited state properties (such as the C 1s core-exciton binding energy of C(60)). In particular, our approach allows us to determine the difference between core- and valence exciton binding energies in C(60) [0.5 (±0.2) eV]. Furthermore, the RIXS map gives detailed insight into the symmetries of the intermediate and final states of the RIXS process.

20.
Nat Commun ; 12(1): 3650, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131129

RESUMEN

Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl semimetals (WSM) exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the crossing point of spin-polarized bands forming the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic WSM. We carried out angle-resolved photoelectron spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. The experiments reveal large spin- and orbital-angular-momentum (SAM and OAM) polarizations of the Weyl-fermion states, resulting from the broken crystalline inversion symmetry in TaAs. Supported by first-principles calculations, our measurements image signatures of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results provide directly bulk-sensitive spectroscopic support for the non-trivial band topology in the WSM TaAs, promising to have profound implications for the study of quantum-geometric effects in solids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA