Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38843116

RESUMEN

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

2.
Eur Respir J ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39326917

RESUMEN

BACKGROUND: Luminal narrowing is a hallmark feature of airway remodeling in COPD, but current measures focus on airway wall remodeling. Quantification of the natural increase in cumulative cross-sectional area along the length of the human airway tree can facilitate assessment of airway narrowing. METHODS: We analysed the airway trees of 7641 subjects enrolled in the multicenter COPDGene cohort. Airway luminal tapering was assessed by estimating the slope of the change in cumulative cross-sectional area along the length of the airway tree over successive generations (T-Slope). We performed multivariable regression analyses to test the associations between T-Slope and lung function, St. George's Respiratory Questionnaire (SGRQ), modified Medical Research Council (mMRC) dyspnea score, 6-minute walk distance (6 MWD), FEV1 change, exacerbations, and all-cause mortality after adjusting for demographics, %CT emphysema, and total airway count. RESULTS: The T-Slope decreased with increasing COPD severity: 2.69 (0.70) in nonsmokers and 2.33 (0.70), 2.11 (0.65), 1.78 (0.58), 1.60 (0.53), and 1.57 (0.52) in GOLD stages 0 through 4 respectively (Jonckheere-Terpstra p=0.04). On multivariable analyses, the T-Slope was independently associated with FEV1 (ß=0.13 L, 95% CI 0.10 to 0.15, p<0.001), 6MWD (ß=15.0 m, 95%CI 10.8 to 19.2, p<0.001), change in FEV1 (ß=-4.50 ml·year-1, 95% CI -7.32 to -1.67; p=0.001), exacerbations (IRR=0.78, 95% CI 0.73 to 0.83, p<0.001), and mortality (HR=0.79, 95% CI 0.72 to 0.86, p<0.001). CONCLUSION: T-Slope is a measure of airway luminal remodeling and is associated with respiratory morbidity and mortality.

3.
Radiology ; 307(5): e222998, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37338355

RESUMEN

Background Approximately half of adults with chronic obstructive pulmonary disease (COPD) remain undiagnosed. Chest CT scans are frequently acquired in clinical practice and present an opportunity to detect COPD. Purpose To assess the performance of radiomics features in COPD diagnosis using standard-dose and low-dose CT models. Materials and Methods This secondary analysis included participants enrolled in the Genetic Epidemiology of COPD, or COPDGene, study at baseline (visit 1) and 10 years after baseline (visit 3). COPD was defined by a forced expiratory volume in the 1st second of expiration to forced vital capacity ratio less than 0.70 at spirometry. The performance of demographics, CT emphysema percentage, radiomics features, and a combined feature set derived from inspiratory CT alone was evaluated. CatBoost (Yandex), a gradient boosting algorithm, was used to perform two classification experiments to detect COPD; the two models were trained and tested on standard-dose CT data from visit 1 (model I) and low-dose CT data from visit 3 (model II). Classification performance of the models was evaluated using area under the receiver operating characteristic curve (AUC) and precision-recall curve analysis. Results A total of 8878 participants (mean age, 57 years ± 9 [SD]; 4180 female, 4698 male) were evaluated. Radiomics features in model I achieved an AUC of 0.90 (95% CI: 0.88, 0.91) in the standard-dose CT test cohort versus demographics (AUC, 0.73; 95% CI: 0.71, 0.76; P < .001), emphysema percentage (AUC, 0.82; 95% CI 0.80, 0.84; P < .001), and combined features (AUC, 0.90; 95% CI: 0.89, 0.92; P = .16). Model II, trained on low-dose CT scans, achieved an AUC of 0.87 (95% CI: 0.83, 0.91) on the 20% held-out test set for radiomics features compared with demographics (AUC, 0.70; 95% CI: 0.64, 0.75; P = .001), emphysema percentage (AUC, 0.74; 95% CI: 0.69, 0.79; P = .002), and combined features (AUC, 0.88; 95% CI: 0.85, 0.92; P = .32). Density and texture features were the majority of the top 10 features in the standard-dose model, whereas shape features of lungs and airways were significant contributors in the low-dose CT model. Conclusion A combination of features representing parenchymal texture and lung and airway shape on inspiratory CT scans can be used to accurately detect COPD. ClinicalTrials.gov registration no. NCT00608764 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Vliegenthart in this issue.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Adulto , Masculino , Humanos , Femenino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen
4.
JAMA ; 330(5): 442-453, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526720

RESUMEN

Importance: People who smoked cigarettes may experience respiratory symptoms without spirometric airflow obstruction. These individuals are typically excluded from chronic obstructive pulmonary disease (COPD) trials and lack evidence-based therapies. Objective: To define the natural history of persons with tobacco exposure and preserved spirometry (TEPS) and symptoms (symptomatic TEPS). Design, Setting, and Participants: SPIROMICS II was an extension of SPIROMICS I, a multicenter study of persons aged 40 to 80 years who smoked cigarettes (>20 pack-years) with or without COPD and controls without tobacco exposure or airflow obstruction. Participants were enrolled in SPIROMICS I and II from November 10, 2010, through July 31, 2015, and followed up through July 31, 2021. Exposures: Participants in SPIROMICS I underwent spirometry, 6-minute walk distance testing, assessment of respiratory symptoms, and computed tomography of the chest at yearly visits for 3 to 4 years. Participants in SPIROMICS II had 1 additional in-person visit 5 to 7 years after enrollment in SPIROMICS I. Respiratory symptoms were assessed with the COPD Assessment Test (range, 0 to 40; higher scores indicate more severe symptoms). Participants with symptomatic TEPS had normal spirometry (postbronchodilator ratio of forced expiratory volume in the first second [FEV1] to forced vital capacity >0.70) and COPD Assessment Test scores of 10 or greater. Participants with asymptomatic TEPS had normal spirometry and COPD Assessment Test scores of less than 10. Patient-reported respiratory symptoms and exacerbations were assessed every 4 months via phone calls. Main Outcomes and Measures: The primary outcome was assessment for accelerated decline in lung function (FEV1) in participants with symptomatic TEPS vs asymptomatic TEPS. Secondary outcomes included development of COPD defined by spirometry, respiratory symptoms, rates of respiratory exacerbations, and progression of computed tomographic-defined airway wall thickening or emphysema. Results: Of 1397 study participants, 226 had symptomatic TEPS (mean age, 60.1 [SD, 9.8] years; 134 were women [59%]) and 269 had asymptomatic TEPS (mean age, 63.1 [SD, 9.1] years; 134 were women [50%]). At a median follow-up of 5.76 years, the decline in FEV1 was -31.3 mL/y for participants with symptomatic TEPS vs -38.8 mL/y for those with asymptomatic TEPS (between-group difference, -7.5 mL/y [95% CI, -16.6 to 1.6 mL/y]). The cumulative incidence of COPD was 33.0% among participants with symptomatic TEPS vs 31.6% among those with asymptomatic TEPS (hazard ratio, 1.05 [95% CI, 0.76 to 1.46]). Participants with symptomatic TEPS had significantly more respiratory exacerbations than those with asymptomatic TEPS (0.23 vs 0.08 exacerbations per person-year, respectively; rate ratio, 2.38 [95% CI, 1.71 to 3.31], P < .001). Conclusions and Relevance: Participants with symptomatic TEPS did not have accelerated rates of decline in FEV1 or increased incidence of COPD vs those with asymptomatic TEPS, but participants with symptomatic TEPS did experience significantly more respiratory exacerbations over a median follow-up of 5.8 years.


Asunto(s)
Fumar Cigarrillos , Enfermedades Pulmonares , Espirometría , Femenino , Humanos , Masculino , Persona de Mediana Edad , Progresión de la Enfermedad , Estudios de Seguimiento , Volumen Espiratorio Forzado , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Capacidad Vital , Estudios Longitudinales , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/fisiopatología , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/fisiopatología , Pruebas de Función Respiratoria
5.
Radiology ; 305(3): 699-708, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35916677

RESUMEN

Background The prevalence of chronic obstructive pulmonary disease (COPD) in women is fast approaching that in men, and women experience greater symptom burden. Although sex differences in emphysema have been reported, differences in airways have not been systematically characterized. Purpose To evaluate whether structural differences in airways may underlie some of the sex differences in COPD prevalence and clinical outcomes. Materials and Methods In a secondary analyses of a multicenter study of never-, current-, and former-smokers enrolled from January 2008 to June 2011 and followed up longitudinally until November 2020, airway disease on CT images was quantified using seven metrics: airway wall thickness, wall area percent, and square root of the wall thickness of a hypothetical airway with internal perimeter of 10 mm (referred to as Pi10) for airway wall; and lumen diameter, airway volume, total airway count, and airway fractal dimension for airway lumen. Least-squares mean values for each airway metric were calculated and adjusted for age, height, ethnicity, body mass index, pack-years of smoking, current smoking status, total lung capacity, display field of view, and scanner type. In ever-smokers, associations were tested between each airway metric and postbronchodilator forced expiratory volume in 1 second (FEV1)-to-forced vital capacity (FVC) ratio, modified Medical Research Council dyspnea scale, St George's Respiratory Questionnaire score, and 6-minute walk distance. Multivariable Cox proportional hazards models were created to evaluate the sex-specific association between each airway metric and mortality. Results In never-smokers (n = 420), men had thicker airway walls than women as quantified on CT images for segmental airway wall area percentage (least-squares mean, 47.68 ± 0.61 [standard error] vs 45.78 ± 0.55; difference, -1.90; P = .02), whereas airway lumen dimensions were lower in women than men after accounting for height and total lung capacity (segmental lumen diameter, 8.05 mm ± 0.14 vs 9.05 mm ± 0.16; difference, -1.00 mm; P < .001). In ever-smokers (n = 9363), men had greater segmental airway wall area percentage (least-squares mean, 52.19 ± 0.16 vs 48.89 ± 0.18; difference, -3.30; P < .001), whereas women had narrower segmental lumen diameter (7.80 mm ± 0.05 vs 8.69 mm ± 0.04; difference, -0.89; P < .001). A unit change in each of the airway metrics (higher wall or lower lumen measure) resulted in lower FEV1-to-FVC ratio, more dyspnea, poorer respiratory quality of life, lower 6-minute walk distance, and worse survival in women compared with men (all P < .01). Conclusion Airway lumen sizes quantified at chest CT were smaller in women than in men after accounting for height and lung size, and these lower baseline values in women conferred lower reserves against respiratory morbidity and mortality for equivalent changes compared with men. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Calidad de Vida , Femenino , Humanos , Masculino , Caracteres Sexuales , Volumen Espiratorio Forzado , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen , Disnea
6.
Radiology ; 304(2): 450-459, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35471111

RESUMEN

Background Clustering key clinical characteristics of participants in the Severe Asthma Research Program (SARP), a large, multicenter prospective observational study of patients with asthma and healthy controls, has led to the identification of novel asthma phenotypes. Purpose To determine whether quantitative CT (qCT) could help distinguish between clinical asthma phenotypes. Materials and Methods A retrospective cross-sectional analysis was conducted with the use of qCT images (maximal bronchodilation at total lung capacity [TLC], or inspiration, and functional residual capacity [FRC], or expiration) from the cluster phenotypes of SARP participants (cluster 1: minimal disease; cluster 2: mild, reversible; cluster 3: obese asthma; cluster 4: severe, reversible; cluster 5: severe, irreversible) enrolled between September 2001 and December 2015. Airway morphometry was performed along standard paths (RB1, RB4, RB10, LB1, and LB10). Corresponding voxels from TLC and FRC images were mapped with use of deformable image registration to characterize disease probability maps (DPMs) of functional small airway disease (fSAD), voxel-level volume changes (Jacobian), and isotropy (anisotropic deformation index [ADI]). The association between cluster assignment and qCT measures was evaluated using linear mixed models. Results A total of 455 participants were evaluated with cluster assignments and CT (mean age ± SD, 42.1 years ± 14.7; 270 women). Airway morphometry had limited ability to help discern between clusters. DPM fSAD was highest in cluster 5 (cluster 1 in SARP III: 19.0% ± 20.6; cluster 2: 18.9% ± 13.3; cluster 3: 24.9% ± 13.1; cluster 4: 24.1% ± 8.4; cluster 5: 38.8% ± 14.4; P < .001). Lower whole-lung Jacobian and ADI values were associated with greater cluster severity. Compared to cluster 1, cluster 5 lung expansion was 31% smaller (Jacobian in SARP III cohort: 2.31 ± 0.6 vs 1.61 ± 0.3, respectively, P < .001) and 34% more isotropic (ADI in SARP III cohort: 0.40 ± 0.1 vs 0.61 ± 0.2, P < .001). Within-lung Jacobian and ADI SDs decreased as severity worsened (Jacobian SD in SARP III cohort: 0.90 ± 0.4 for cluster 1; 0.79 ± 0.3 for cluster 2; 0.62 ± 0.2 for cluster 3; 0.63 ± 0.2 for cluster 4; and 0.41 ± 0.2 for cluster 5; P < .001). Conclusion Quantitative CT assessments of the degree and intraindividual regional variability of lung expansion distinguished between well-established clinical phenotypes among participants with asthma from the Severe Asthma Research Program study. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Verschakelen in this issue.


Asunto(s)
Asma , Asma/diagnóstico por imagen , Estudios Transversales , Femenino , Humanos , Pulmón/diagnóstico por imagen , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
7.
Am J Respir Crit Care Med ; 203(2): 185-191, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32755486

RESUMEN

Rationale: Airway remodeling in chronic obstructive pulmonary disease (COPD) is due to luminal narrowing and/or loss of airways. Existing computed tomographic metrics of airway disease reflect only components of these processes. With progressive airway narrowing, the ratio of the airway luminal surface area to volume (SA/V) should increase, and with predominant airway loss, SA/V should decrease.Objectives: To phenotype airway remodeling in COPD.Methods: We analyzed the airway trees of 4,325 subjects with COPD Global Initiative for Chronic Obstructive Lung Disease stages 0 to 4 and 73 nonsmokers enrolled in the multicenter COPDGene (Genetic Epidemiology of COPD) cohort. Surface area and volume measurements were estimated for the subtracheal airway tree to derive SA/V. We performed multivariable regression analyses to test associations between SA/V and lung function, 6-minute-walk distance, St. George's Respiratory Questionnaire, change in FEV1, and mortality, adjusting for demographics, total airway count, airway wall thickness, and emphysema. On the basis of the change in SA/V over 5 years, we categorized subjects into predominant airway narrowing [positive ∆(SA/V) more than 0] and predominant airway loss [negative ∆(SA/V) less than 0] and compared survival between the two groups.Measurements and Main Results: Airway SA/V was independently associated with FEV1/FVC (ß = 0.12; 95% confidence interval [CI], 0.09-0.14; P < 0.001) and FEV1% predicted (ß = 20.10; 95% CI, 15.13-25.08; P < 0.001). Airway SA/V was also independently associated with 6-minute-walk distance, respiratory quality of life, and lung function decline. Compared with subjects with predominant airway narrowing (n = 2,914; 66.3%), those with predominant airway loss (n = 1,484; 33.7%) had worse survival (adjusted hazard ratio for all-cause mortality = 1.58; 95% CI, 1.18-2.13; P = 0.002).Conclusions: Computed tomography-based airway SA/V is an imaging biomarker of airway remodeling and provides differential information on predominant airway narrowing and loss in COPD. SA/V is associated with respiratory morbidity, lung function decline, and survival.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Tomografía Computarizada de Haz Cónico , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Modelos de Riesgos Proporcionales , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
8.
Am J Respir Crit Care Med ; 196(11): 1404-1410, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28707983

RESUMEN

RATIONALE: A substantial proportion of subjects without overt airflow obstruction have significant respiratory morbidity and structural abnormalities as visualized by computed tomography. Whether regions of the lung that appear normal using traditional computed tomography criteria have mild disease is not known. OBJECTIVES: To identify subthreshold structural disease in normal-appearing lung regions in smokers. METHODS: We analyzed 8,034 subjects with complete inspiratory and expiratory computed tomographic data participating in the COPDGene Study, including 103 lifetime nonsmokers. The ratio of the mean lung density at end expiration (E) to end inspiration (I) was calculated in lung regions with normal density (ND) by traditional thresholds for mild emphysema (-910 Hounsfield units) and gas trapping (-856 Hounsfield units) to derive the ND-E/I ratio. Multivariable regression analysis was used to measure the associations between ND-E/I, lung function, and respiratory morbidity. MEASUREMENTS AND MAIN RESULTS: The ND-E/I ratio was greater in smokers than in nonsmokers, and it progressively increased from mild to severe chronic obstructive pulmonary disease severity. A proportion of 26.3% of smokers without airflow obstruction had ND-E/I greater than the 90th percentile of normal. ND-E/I was independently associated with FEV1 (adjusted ß = -0.020; 95% confidence interval [CI], -0.032 to -0.007; P = 0.001), St. George's Respiratory Questionnaire scores (adjusted ß = 0.952; 95% CI, 0.529 to 1.374; P < 0.001), 6-minute-walk distance (adjusted ß = -10.412; 95% CI, -12.267 to -8.556; P < 0.001), and body mass index, airflow obstruction, dyspnea, and exercise capacity index (adjusted ß = 0.169; 95% CI, 0.148 to 0.190; P < 0.001), and also with FEV1 change at follow-up (adjusted ß = -3.013; 95% CI, -4.478 to -1.548; P = 0.001). CONCLUSIONS: Subthreshold gas trapping representing mild small airway disease is prevalent in normal-appearing lung regions in smokers without airflow obstruction, and it is associated with respiratory morbidity. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).


Asunto(s)
Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fumar/efectos adversos , Fumar/fisiopatología , Femenino , Volumen Espiratorio Forzado/fisiología , Gases , Humanos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Fumadores , Encuestas y Cuestionarios , Tomografía Computarizada por Rayos X , Prueba de Paso
9.
Am J Respir Crit Care Med ; 196(5): 569-576, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28481639

RESUMEN

RATIONALE: The rate of decline of lung function is greater than age-related change in a substantial proportion of patients with chronic obstructive pulmonary disease, even after smoking cessation. Regions of the lung adjacent to emphysematous areas are subject to abnormal stretch during respiration, and this biomechanical stress likely influences emphysema initiation and progression. OBJECTIVES: To assess whether quantifying this penumbra of lung at risk would predict FEV1 decline. METHODS: We analyzed paired inspiratory-expiratory computed tomography images at baseline of 680 subjects participating in a large multicenter study (COPDGene) over approximately 5 years. By matching inspiratory and expiratory images voxel by voxel using image registration, we calculated the Jacobian determinant, a measure of local lung expansion and contraction with respiration. We measured the distance between each normal voxel to the nearest emphysematous voxel, and quantified the percentage of normal voxels within each millimeter distance from emphysematous voxels as mechanically affected lung (MAL). Multivariable regression analyses were performed to assess the relationship between the Jacobian determinant, MAL, and FEV1 decline. MEASUREMENTS AND MAIN RESULTS: The mean (SD) rate of decline in FEV1 was 39.0 (58.6) ml/yr. There was a progressive decrease in the mean Jacobian determinant of both emphysematous and normal voxels with increasing disease stage (P < 0.001). On multivariable analyses, the mean Jacobian determinant of normal voxels within 2 mm of emphysematous voxels (MAL2) was significantly associated with FEV1 decline. In mild-moderate disease, for participants at or above the median MAL2 (threshold, 36.9%), the mean decline in FEV1 was 56.4 (68.0) ml/yr versus 43.2 (59.9) ml/yr for those below the median (P = 0.044). CONCLUSIONS: Areas of normal-appearing lung are mechanically influenced by emphysematous areas and this lung at risk is associated with lung function decline. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).


Asunto(s)
Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Volumen Espiratorio Forzado/fisiología , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria/estadística & datos numéricos
10.
Thorax ; 72(5): 409-414, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28044005

RESUMEN

BACKGROUND: Traditional metrics of lung disease such as those derived from spirometry and static single-volume CT images are used to explain respiratory morbidity in patients with COPD, but are insufficient. We hypothesised that the mean Jacobian determinant, a measure of local lung expansion and contraction with respiration, would contribute independently to clinically relevant functional outcomes. METHODS: We applied image registration techniques to paired inspiratory-expiratory CT scans and derived the Jacobian determinant of the deformation field between the two lung volumes to map local volume change with respiration. We analysed 490 participants with COPD with multivariable regression models to assess strengths of association between traditional CT metrics of disease and the Jacobian determinant with respiratory morbidity including dyspnoea (modified Medical Research Council), St Georges Respiratory Questionnaire (SGRQ) score, 6-min walk distance (6MWD) and the Body Mass Index, Airflow Obstruction, Dyspnoea and Exercise Capacity (BODE) index, as well as all-cause mortality. RESULTS: The Jacobian determinant was significantly associated with SGRQ (adjusted regression coefficient ß=-11.75,95% CI -21.6 to -1.7; p=0.020), and with 6MWD (ß=321.15, 95% CI 134.1 to 508.1; p<0.001), independent of age, sex, race, body mass index, FEV1, smoking pack-years, CT emphysema, CT gas trapping, airway wall thickness and CT scanner type. The mean Jacobian determinant was also independently associated with the BODE index (ß=-0.41, 95% CI -0.80 to -0.02; p=0.039) and mortality on follow-up (adjusted HR=4.26, 95% CI 0.93 to 19.23; p=0.064). CONCLUSIONS: Biomechanical metrics representing local lung expansion and contraction improve prediction of respiratory morbidity and mortality and offer additional prognostic information beyond traditional measures of lung function and static single-volume CT metrics. TRIAL REGISTRATION NUMBER: NCT00608764; Post-results.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Obstrucción de las Vías Aéreas/fisiopatología , Índice de Masa Corporal , Causas de Muerte , Disnea/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Imagenología Tridimensional , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Resistencia Física/fisiología , Pronóstico , Calidad de Vida , Pruebas de Función Respiratoria , Mecánica Respiratoria/fisiología , Programas Informáticos , Encuestas y Cuestionarios
11.
J Appl Clin Med Phys ; 17(2): 550-560, 2016 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-27074479

RESUMEN

Ventilation distribution calculation using 4D CT has shown promising potential in several clinical applications. This study evaluated the direct geometric ventilation calculation method, namely the ΔV method, with xenon-enhanced CT (XeCT) ventilation data from four sheep, and compared it with two other published meth-ods, the Jacobian and the Hounsfield unit (HU) methods. Spearman correlation coefficient (SCC) and Dice similarity coefficient (DSC) were used for the evaluation and comparison. The average SCC with one standard deviation was 0.44 ± 0.13 with a range between 0.29 and 0.61 between the XeCT and ΔV ventilation distributions. The average DSC value for lower 30% ventilation volumes between the XeCT and ΔV ventilation distributions was 0.55 ± 0.07 with a range between 0.48 and 0.63. Ventilation difference introduced by deformable image registration errors improved with smoothing. In conclusion, ventilation distributions generated using ΔV-4D CT and deformable image registration are in reasonably agreement with the in vivo XeCT measured ventilation distribution.


Asunto(s)
Algoritmos , Tomografía Computarizada Cuatridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Ventilación Pulmonar , Respiración , Xenón , Animales , Masculino , Ovinos , Relación Señal-Ruido
12.
Am J Respir Crit Care Med ; 188(12): 1434-41, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24168209

RESUMEN

RATIONALE: Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. OBJECTIVES: To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. METHODS: On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. MEASUREMENTS AND MAIN RESULTS: On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. CONCLUSIONS: The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.


Asunto(s)
Obstrucción de las Vías Aéreas/etiología , Fibrosis Quística/fisiopatología , Obstrucción de las Vías Aéreas/congénito , Obstrucción de las Vías Aéreas/diagnóstico por imagen , Obstrucción de las Vías Aéreas/patología , Resistencia de las Vías Respiratorias , Animales , Bronquios/patología , Bronquios/fisiopatología , Broncografía/métodos , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/patología , Mediciones del Volumen Pulmonar , Tomografía Computarizada Multidetector , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiopatología , Porcinos , Tráquea/diagnóstico por imagen , Tráquea/patología , Tráquea/fisiopatología
13.
IEEE Trans Med Imaging ; 43(7): 2448-2465, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38373126

RESUMEN

Chest computed tomography (CT) at inspiration is often complemented by an expiratory CT to identify peripheral airways disease. Additionally, co-registered inspiratory-expiratory volumes can be used to derive various markers of lung function. Expiratory CT scans, however, may not be acquired due to dose or scan time considerations or may be inadequate due to motion or insufficient exhale; leading to a missed opportunity to evaluate underlying small airways disease. Here, we propose LungViT- a generative adversarial learning approach using hierarchical vision transformers for translating inspiratory CT intensities to corresponding expiratory CT intensities. LungViT addresses several limitations of the traditional generative models including slicewise discontinuities, limited size of generated volumes, and their inability to model texture transfer at volumetric level. We propose a shifted-window hierarchical vision transformer architecture with squeeze-and-excitation decoder blocks for modeling dependencies between features. We also propose a multiview texture similarity distance metric for texture and style transfer in 3D. To incorporate global information into the training process and refine the output of our model, we use ensemble cascading. LungViT is able to generate large 3D volumes of size 320×320×320 . We train and validate our model using a diverse cohort of 1500 subjects with varying disease severity. To assess model generalizability beyond the development set biases, we evaluate our model on an out-of-distribution external validation set of 200 subjects. Clinical validation on internal and external testing sets shows that synthetic volumes could be reliably adopted for deriving clinical endpoints of chronic obstructive pulmonary disease.


Asunto(s)
Pulmón , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen , Algoritmos , Radiografía Torácica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
14.
Ann Am Thorac Soc ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39404745

RESUMEN

Rationale Emphysema progression is heterogeneous. Predicting temporal changes in lung density and detecting rapid progressors may facilitate selection of individuals for targeted therapies. Objective To test whether computed tomography (CT) radiomics can be used to predict changes in lung density and detect rapid progressors. Methods We extracted radiomics features from inspiratory chest CT in 4,575 subjects with and without airflow obstruction at enrollment, who completed a follow-up visit at approximately 5 years. We quantified emphysema using adjusted lung density (ALD) and estimated emphysema progression as the annualized change in ALD (∆ALD/year) between visits. We categorized participants into rapid progressors (>1% ∆ALD/year) and stable disease (≤1% ∆ALD/year). A gradient boosting model was used (1) to predict ALD at 5-years and (2) to identify rapid progressors. Four models using demographics (base clinical model); CT density; radiomics; and combined features (clinical, radiomics, and CT density) were evaluated and tested. Results There were 1,773 (38.8%) rapid progressors. For predicting ALD at 5-years in the 20% held-out data, the base model explained 31% of the variance (adjusted R2 = 0.31) whereas R2 was 0.74 for the CT density model, 0.66 for the radiomics-only model, and 0.77 for the combined features model. For detecting rapid progressors, the base model (AUC = 0.57, 95%CI 0.53-0.61) was outperformed by the radiomics-only model (AUC = 0.73, 95%CI 0.69-0.76, ∆ =0.0003, p < 0.001) and the combined model (AUC = 0.74, 95%CI 0.71-0.77, ∆ = 0.0003, p < 0.001). Conclusions Parenchymal and airway radiomics features derived from inspiratory scans can be used to predict temporal changes in lung density and help identify rapid progressors.

15.
Int J Radiat Oncol Biol Phys ; 119(5): 1393-1402, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387810

RESUMEN

PURPOSE: To determine whether 4-dimensional computed tomography (4DCT) ventilation-based functional lung avoidance radiation therapy preserves pulmonary function compared with standard radiation therapy for non-small cell lung cancer (NSCLC). METHODS AND MATERIALS: This single center, randomized, phase 2 trial enrolled patients with NSCLC receiving curative intent radiation therapy with either stereotactic body radiation therapy or conventionally fractionated radiation therapy between 2016 and 2022. Patients were randomized 1:1 to standard of care radiation therapy or functional lung avoidance radiation therapy. The primary endpoint was the change in Jacobian-based ventilation as measured on 4DCT from baseline to 3 months postradiation. Secondary endpoints included changes in volume of high- and low-ventilating lung, pulmonary toxicity, and changes in pulmonary function tests (PFTs). RESULTS: A total of 122 patients were randomized and 116 were available for analysis. Median follow up was 29.9 months. Functional avoidance plans significantly (P < .05) reduced dose to high-functioning lung without compromising target coverage or organs at risk constraints. When analyzing all patients, there was no difference in the amount of lung showing a reduction in ventilation from baseline to 3 months between the 2 arms (1.91% vs 1.87%; P = .90). Overall grade ≥2 and grade ≥3 pulmonary toxicities for all patients were 24.1% and 8.6%, respectively. There was no significant difference in pulmonary toxicity or changes in PFTs between the 2 study arms. In the conventionally fractionated cohort, there was a lower rate of grade ≥2 pneumonitis (8.2% vs 32.3%; P = .049) and less of a decline in change in forced expiratory volume in 1 second (-3 vs -5; P = .042) and forced vital capacity (1.5 vs -6; P = .005) at 3 months, favoring the functional avoidance arm. CONCLUSIONS: There was no difference in posttreatment ventilation as measured by 4DCT between the arms. In the cohort of patients treated with conventionally fractionated radiation therapy with functional lung avoidance, there was reduced pulmonary toxicity, and less decline in PFTs suggesting a clinical benefit in patients with locally advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Pulmón , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Femenino , Anciano , Persona de Mediana Edad , Pulmón/efectos de la radiación , Pulmón/diagnóstico por imagen , Radiocirugia/efectos adversos , Radiocirugia/métodos , Anciano de 80 o más Años , Fraccionamiento de la Dosis de Radiación , Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo/efectos de la radiación , Órganos en Riesgo/diagnóstico por imagen , Pruebas de Función Respiratoria , Respiración
16.
Sci Transl Med ; 16(760): eado1097, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141699

RESUMEN

Mechanical ventilation exposes the lung to injurious stresses and strains that can negatively affect clinical outcomes in acute respiratory distress syndrome or cause pulmonary complications after general anesthesia. Excess global lung strain, estimated as increased respiratory system driving pressure, is associated with mortality related to mechanical ventilation. The role of small-dimension biomechanical factors underlying this association and their spatial heterogeneity within the lung are currently unknown. Using four-dimensional computed tomography with a voxel resolution of 2.4 cubic millimeters and a multiresolution convolutional neural network for whole-lung image segmentation, we dynamically measured voxel-wise lung inflation and tidal parenchymal strains. Healthy or injured ovine lungs were evaluated as the mechanical ventilation positive end-expiratory pressure (PEEP) was titrated from 20 to 2 centimeters of water. The PEEP of minimal driving pressure (PEEPDP) optimized local lung biomechanics. We observed a greater rate of change in nonaerated lung mass with respect to PEEP below PEEPDP compared with PEEP values above this threshold. PEEPDP similarly characterized a breaking point in the relationships between PEEP and SD of local tidal parenchymal strain, the 95th percentile of local strains, and the magnitude of tidal overdistension. These findings advance the understanding of lung collapse, tidal overdistension, and strain heterogeneity as local triggers of ventilator-induced lung injury in large-animal lungs similar to those of humans and could inform the clinical management of mechanical ventilation to improve local lung biomechanics.


Asunto(s)
Pulmón , Respiración con Presión Positiva , Respiración Artificial , Animales , Pulmón/fisiopatología , Ovinos , Fenómenos Biomecánicos , Respiración Artificial/efectos adversos , Presión , Tomografía Computarizada por Rayos X , Volumen de Ventilación Pulmonar
17.
medRxiv ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39314974

RESUMEN

Rationale: Quantifying functional small airways disease (fSAD) requires additional expiratory computed tomography (CT) scan, limiting clinical applicability. Artificial intelligence (AI) could enable fSAD quantification from chest CT scan at total lung capacity (TLC) alone (fSADTLC). Objectives: To evaluate an AI model for estimating fSADTLC and study its clinical associations in chronic obstructive pulmonary disease (COPD). Methods: We analyzed 2513 participants from the SubPopulations and InteRmediate Outcome Measures in COPD Study (SPIROMICS). Using a subset (n = 1055), we developed a generative model to produce virtual expiratory CTs for estimating fSADTLC in the remaining 1458 SPIROMICS participants. We compared fSADTLC with dual volume, parametric response mapping fSADPRM. We investigated univariate and multivariable associations of fSADTLC with FEV1, FEV1/FVC, six-minute walk distance (6MWD), St. George's Respiratory Questionnaire (SGRQ), and FEV1 decline. The results were validated in a subset (n = 458) from COPDGene study. Multivariable models were adjusted for age, race, sex, BMI, baseline FEV1, smoking pack years, smoking status, and percent emphysema. Measurements and Main Results: Inspiratory fSADTLC was highly correlated with fSADPRM in SPIROMICS (Pearson's R = 0.895) and COPDGene (R = 0.897) cohorts. In SPIROMICS, fSADTLC was associated with FEV1 (L) (adj.ß = -0.034, P < 0.001), FEV1/FVC (adj.ß = -0.008, P < 0.001), SGRQ (adj.ß = 0.243, P < 0.001), and FEV1 decline (mL / year) (adj.ß = -1.156, P < 0.001). fSADTLC was also associated with FEV1 (L) (adj.ß = -0.032, P < 0.001), FEV1/FVC (adj.ß = -0.007, P < 0.001), SGRQ (adj.ß = 0.190, P = 0.02), and FEV1 decline (mL / year) (adj.ß = -0.866, P = 0.001) in COPDGene. We found fSADTLC to be more repeatable than fSADPRM with intraclass correlation of 0.99 (95% CI: 0.98, 0.99) vs. 0.83 (95% CI: 0.76, 0.88). Conclusions: Inspiratory fSADTLC captures small airways disease as reliably as fSADPRM and is associated with FEV1 decline.

18.
Blood Adv ; 8(19): 5156-5165, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39163616

RESUMEN

ABSTRACT: Bronchiolitis obliterans syndrome (BOS) after hematopoietic cell transplantation (HCT) is associated with substantial morbidity and mortality. Quantitative computed tomography (qCT) can help diagnose advanced BOS meeting National Institutes of Health (NIH) criteria (NIH-BOS) but has not been used to diagnose early, often asymptomatic BOS (early BOS), limiting the potential for early intervention and improved outcomes. Using pulmonary function tests (PFTs) to define NIH-BOS, early BOS, and mixed BOS (NIH-BOS with restrictive lung disease) in patients from 2 large cancer centers, we applied qCT to identify early BOS and distinguish between types of BOS. Patients with transient impairment or healthy lungs were included for comparison. PFTs were done at month 0, 6, and 12. Analysis was performed with association statistics, principal component analysis, conditional inference trees (CITs), and machine learning (ML) classifier models. Our cohort included 84 allogeneic HCT recipients, 66 with BOS (NIH-defined, early, or mixed) and 18 without BOS. All qCT metrics had moderate correlation with forced expiratory volume in 1 second, and each qCT metric differentiated BOS from those without BOS (non-BOS; P < .0001). CITs distinguished 94% of participants with BOS vs non-BOS, 85% of early BOS vs non-BOS, 92% of early BOS vs NIH-BOS. ML models diagnosed BOS with area under the curve (AUC) of 0.84 (95% confidence interval [CI], 0.74-0.94) and early BOS with AUC of 0.84 (95% CI, 0.69-0.97). qCT metrics can identify individuals with early BOS, paving the way for closer monitoring and earlier treatment in this vulnerable population.


Asunto(s)
Bronquiolitis Obliterante , Trasplante de Células Madre Hematopoyéticas , Tomografía Computarizada por Rayos X , Bronquiolitis Obliterante/etiología , Bronquiolitis Obliterante/diagnóstico , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Pruebas de Función Respiratoria , Diagnóstico Precoz , Anciano , Síndrome de Bronquiolitis Obliterante
19.
J Appl Physiol (1985) ; 135(3): 534-541, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439240

RESUMEN

Sliding between lung lobes along lobar fissures is a poorly understood aspect of lung mechanics. The objective of this study was to test the hypothesis that lobar sliding helps reduce distortion in the lung parenchyma during breathing. Finite element models of left lungs with geometries and boundary conditions derived from medical images of human subjects were developed. Effect of lobar sliding was studied by comparing nonlinear finite elastic contact mechanics simulations that allowed and disallowed lobar sliding. Lung parenchymal distortion during simulated breath-holds and tidal breathing was quantified with the model's spatial mean anisotropic deformation index (ADI), a measure of directional preference in volume change that varies spatially in the lung. Models that allowed lobar sliding had significantly lower mean ADI (i.e., lesser parenchymal distortion) than models that disallowed lobar sliding under simulations of both tidal breathing (5.3% median difference, P = 0.008, n = 8) and lung deformation between breath-holds at total lung capacity and functional residual capacity (3.2% median difference, P = 0.03, n = 6). This effect was most pronounced in the lower lobe where lobar sliding reduced parenchymal distortion with statistical significance, but not in the upper lobe. In addition, more lobar sliding was correlated with greater reduction in distortion between sliding and nonsliding models in our study cohorts (Pearson's correlation coefficient of 0.95 for tidal breathing, 0.87 for breath-holds, and 0.91 for the combined dataset). These findings are consistent with the hypothesis that lung lobar sliding reduces parenchymal distortion during breathing.NEW & NOTEWORTHY The role of lobar sliding in lung mechanics is poorly understood. Delineating this role could help explain how breathing is affected by anatomical differences between subjects such as incomplete and missing lobar fissures. We used computational contact mechanics models of lungs from human subjects to delineate the effect of lobar sliding by comparing simulations that allowed and disallowed sliding. We found evidence consistent with the hypothesis that lung lobar sliding reduces parenchymal distortion during breathing.


Asunto(s)
Pulmón , Respiración , Humanos , Capacidad Residual Funcional , Capacidad Pulmonar Total , Pruebas de Función Respiratoria
20.
Sci Rep ; 13(1): 9377, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296169

RESUMEN

Imaging biomarkers can assess disease progression or prognoses and are valuable tools to help guide interventions. Particularly in lung imaging, biomarkers present an opportunity to extract regional information that is more robust to the patient's condition prior to intervention than current gold standard pulmonary function tests (PFTs). This regional aspect has particular use in functional avoidance radiation therapy (RT) in which treatment planning is optimized to avoid regions of high function with the goal of sparing functional lung and improving patient quality of life post-RT. To execute functional avoidance, detailed dose-response models need to be developed to identify regions which should be protected. Previous studies have begun to do this, but for these models to be clinically translated, they need to be validated. This work validates two metrics that encompass the main components of lung function (ventilation and perfusion) through post-mortem histopathology performed in a novel porcine model. With these methods validated, we can use them to study the nuanced radiation-induced changes in lung function and develop more advanced models.


Asunto(s)
Neoplasias Pulmonares , Porcinos , Animales , Neoplasias Pulmonares/radioterapia , Calidad de Vida , Pulmón/diagnóstico por imagen , Perfusión , Tomografía Computarizada por Rayos X , Biomarcadores , Planificación de la Radioterapia Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA