Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Inorg Chem ; 63(19): 8674-8684, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38691843

RESUMEN

Pertechnetate, the most stable form of the radionuclide 99Tc in aerobic aqueous systems, is a hazardous anion present in nuclear waste. Its high mobility in water makes the remediation of the anion challenging. In the past decade, significant effort has been placed into finding materials capable of adsorbing this species. Here, we present the synthesis and high-resolution crystal structure of the coordination polymer [Ag(2,4'-bipyridine)]NO3, which is capable of sequestering perrhenate─a pertechnetate surrogate─through anion exchange to form another new coordination polymer, [Ag(2,4'-bipyridine)]ReO4. Both the beginning and end structures were solved by single-crystal X-ray diffraction and the adsorption reaction was monitored through inductively coupled plasma-optical emission spectroscopy and UV-vis spectroscopy. The exchange reaction follows a pseudo-second-order mechanism and the maximum adsorption capacity is 764 mg ReO4/g [Ag(2,4'-bipyridine)]NO3, one of the highest recorded for a coordination polymer or metal-organic framework. A solvent-mediated recrystallization mechanism was determined by monitoring the ion-exchange reaction by scanning electron microscopy-energy-dispersive spectroscopy and powder X-ray diffraction.

2.
Angew Chem Int Ed Engl ; 63(5): e202318475, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078602

RESUMEN

The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.

3.
J Am Chem Soc ; 145(49): 26890-26899, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38037882

RESUMEN

Developing innovative porous solid sorbents for the capture and storage of toxic SO2 is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO2 sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand. This ligand is then assembled into a highly porous Zr-metal-organic framework (MOF) denoted as Zr-TPA, which exhibits a newly discovered 3,4,8-c woy net structure. Remarkably, our Zr-TPA MOF achieved an unprecedented SO2 sorption capacity of 22.7 mmol g-1 at 298 K and 1 bar, surpassing those of all previously reported solid sorbents. We elucidated the distinct SO2 sorption behaviors observed in isostructural Zr-TPA variants synthesized with different capping modulators (formate, acetate, benzoate, and trifluoroacetate, abbreviated as FA, HAc, BA, and TFA, respectively) through computational analyses. These analyses revealed unexpected SO2-induced modulator-node dynamics, resulting in transient chemisorption that enhanced synergistic SO2 sorption. Additionally, we conducted a proof-of-concept experiment demonstrating that the captured SO2 in Zr-TPA-FA can be converted in situ into a valuable pharmaceutical intermediate known as aryl N-aminosulfonamide, with a high yield and excellent recyclability. This highlights the potential of robust Zr-MOFs for storing SO2 in catalytic applications. In summary, this work contributes significantly to the development of efficient SO2 solid sorbents and advances our understanding of the molecular mechanisms underlying SO2 sorption in Zr-MOF materials.

4.
Inorg Chem ; 62(19): 7150-7154, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37130277

RESUMEN

Neutral triple-decker iron and cobalt complexes with a bridging 1,2-diboratabenzene ligand were accessed by reactions of a dilithium 1,2-diboratabenzene reagent with [Cp*FeCl]2 and [Cp*CoCl]2, respectively. While 1,2-diboratabenzene metal complexes are known, these represent the first examples of the ligand bridging two metals.

5.
Inorg Chem ; 62(37): 15173-15179, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37669231

RESUMEN

The deoxygenation of environmental pollutants CO2 and NO2- to form value-added products is reported. CO2 reduction with subsequent CO release and NO2- conversion to NO are achieved via the starting complex Fe(PPhPDI)Cl2 (1). 1 contains the redox-active pyridinediimine (PDI) ligand with a hemilabile phosphine located in the secondary coordination sphere. 1 was reduced with SmI2 under a CO2 atmosphere to form the direduced monocarbonyl Fe(PPhPDI)(CO) (2). Subsequent CO release was achieved via oxidation of 2 using the NOx- source, NO2-. The resulting [Fe(PPhPDI)(NO)]+ (3) mononitrosyl iron complex (MNIC) is formed as the exclusive reduction product due to the hemilabile phosphine. 3 was investigated computationally to be characterized as {FeNO}7, an unusual intermediate-spin Fe(III) coupled to triplet NO- and a singly reduced PDI ligand.

6.
Angew Chem Int Ed Engl ; 62(33): e202306198, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37369627

RESUMEN

Achieving substantial anisotropic thermal expansion (TE) in solid-state materials is challenging as most materials undergo volumetric expansion upon heating. Here, we describe colossal, anisotropic TE in crystals of an organic compound functionalized with two azo groups. Interestingly, the material exhibits distinct and switchable TE behaviors within different temperature regions. At high temperature, two-dimensional, area zero TE and colossal, positive linear TE (α=211 MK-1 ) are attained due to dynamic motion, while at low temperature, moderate positive TE occurs in all directions. Investigation of the solid-state motion showed the change in enthalpy and entropy are quite different in the two temperature regions and solid-state NMR experiments support motion in the solid. Cycling experiments demonstrate that the solid-state motions and TE behaviors are completely reversible. These results reveal strategies for designing significant anisotropic and switchable behaviors in solid-state materials.

7.
Molecules ; 27(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35164313

RESUMEN

The ditopic halogen-bond (X-bond) donors 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene (1,2-, 1,3-, and 1,4-di-I-tFb, respectively) form binary cocrystals with the unsymmetrical ditopic X-bond acceptor trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4-bpe). The components of each cocrystal (1,2-di-I-tFb)·(2,4-bpe), (1,3-di-I-tFb)·(2,4-bpe), and (1,4-di-I-tFb)·(2,4-bpe) assemble via N···I X-bonds. For (1,2-di-I-tFb)·(2,4-bpe) and (1,3-di-I-tFb)·(2,4-bpe), the X-bond donor supports the C=C bonds of 2,4-bpe to undergo a topochemical [2+2] photodimerization in the solid state: UV-irradiation of each solid resulted in stereospecific, regiospecific, and quantitative photodimerization of 2,4-bpe to the corresponding head-to-tail (ht) or head-to-head (hh) cyclobutane photoproduct, respectively.

8.
Inorg Chem ; 60(21): 15901-15909, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34514780

RESUMEN

Selective coupling of NO by a nonclassical dinuclear dinitrosyliron complex (D-DNIC) to form N2O is reported. The coupling is facilitated by the pyridinediimine (PDI) ligand scaffold, which enables the necessary denticity changes to produce mixed-valent, electron-deficient tethered DNICs. One-electron oxidation of the [{Fe(NO)2}]210/10 complex Fe2(PyrrPDI)(NO)4 (4) results in NO coupling to form N2O via the mixed-valent {[Fe(NO)2]2}9/10 species, which possesses an electron-deficient four-coordinate {Fe(NO)2}10 site, crucial in N-N bond formation. The hemilability of the PDI scaffold dictates the selectivity in N-N bond formation because stabilization of the five-coordinate {Fe(NO)2}9 site in the mixed-valent [{Fe(NO)2}]29/10 species, [Fe2(Pyr2PDI)(NO)4][PF6] (6), does not result in an electron-deficient, four-coordinate {Fe(NO)2}10 site, and hence no N-N coupling is observed.

9.
Inorg Chem ; 60(6): 3572-3584, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33616393

RESUMEN

The atomic-level tunability of molecular structures is a compelling reason to develop homogeneous catalysts for challenging reactions such as the electrochemical reduction of carbon dioxide to valuable C1-Cn products. Of particular interest is methane, the largest component of natural gas. Herein, we report a series of three isomeric rhenium tricarbonyl complexes coordinated by the asymmetric diimine ligands 2-(isoquinolin-1-yl)-4,5-dihydrooxazole (quin-1-oxa), 2-(quinolin-2-yl)-4,5-dihydrooxazole (quin-2-oxa), and 2-(isoquinolin-3-yl)-4,5-dihydrooxazole (quin-3-oxa) that catalyze the reduction of CO2 to carbon monoxide and methane, albeit the latter with a low efficiency. To our knowledge, these complexes are the first examples of rhenium(I) catalysts capable of converting carbon dioxide into methane. Re(quin-1-oxa)(CO)3Cl (1), Re(quin-2-oxa)(CO)3Cl (2), and Re(quin-3-oxa)(CO)3Cl (3) were characterized and studied using a variety of electrochemical and spectroscopic techniques. In bulk electrolysis experiments, the three complexes reduce CO2 to CO and CH4. When the controlled-potential electrolysis experiments are performed at -2.5 V (vs Fc+/0) and in the presence of the Brønsted acid 2,2,2-trifluoroethanol, methane is produced with turnover numbers that range from 1.3 to 1.8. Isotope labeling experiments using 13CO2 atmosphere produce 13CH4 (m/z = 17) confirming that methane originates from CO2 reduction. Theoretical calculations are performed to investigate the mechanistic aspects of the 8e-/8H+ reduction of CO2 to CH4. A ligand-assisted pathway is proposed to be an efficient pathway in the formation of CH4. Delocalization of the electron density on the (iso)quinoline moiety upon reduction stabilizes the key carbonyl intermediate leading to additional reactivity of this ligand. These results should aid the development of more robust catalytic systems that produce CH4 from CO2.

10.
Proc Natl Acad Sci U S A ; 114(26): E5042-E5051, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28615438

RESUMEN

Outer-shell s0/p0 orbital mixing with d10 orbitals and symmetry reduction upon cupriphication of cyclic trinuclear trigonal-planar gold(I) complexes are found to sensitize ground-state Cu(I)-Au(I) covalent bonds and near-unity phosphorescence quantum yields. Heterobimetallic Au4Cu2 {[Au4(µ-C2,N3-EtIm)4Cu2(µ-3,5-(CF3)2Pz)2], (4a)}, Au2Cu {[Au2(µ-C2,N3-BzIm)2Cu(µ-3,5-(CF3)2Pz)], (1) and [Au2(µ-C2,N3-MeIm)2Cu(µ-3,5-(CF3)2Pz)], (3a)}, AuCu2 {[Au(µ-C2,N3-MeIm)Cu2(µ-3,5-(CF3)2Pz)2], (3b) and [Au(µ-C2,N3-EtIm)Cu2(µ-3,5-(CF3)2Pz)2], (4b)} and stacked Au3/Cu3 {[Au(µ-C2,N3-BzIm)]3[Cu(µ-3,5-(CF3)2Pz)]3, (2)} form upon reacting Au3 {[Au(µ-C2,N3-(N-R)Im)]3 ((N-R)Im = imidazolate; R = benzyl/methyl/ethyl = BzIm/MeIm/EtIm)} with Cu3 {[Cu(µ-3,5-(CF3)2Pz)]3 (3,5-(CF3)2Pz = 3,5-bis(trifluoromethyl)pyrazolate)}. The crystal structures of 1 and 3a reveal stair-step infinite chains whereby adjacent dimer-of-trimer units are noncovalently packed via two Au(I)⋯Cu(I) metallophilic interactions, whereas 4a exhibits a hexanuclear cluster structure wherein two monomer-of-trimer units are linked by a genuine d10-d10 polar-covalent bond with ligand-unassisted Cu(I)-Au(I) distances of 2.8750(8) Å each-the shortest such an intermolecular distance ever reported between any two d10 centers so as to deem it a "metal-metal bond" vis-à-vis "metallophilic interaction." Density-functional calculations estimate 35-43 kcal/mol binding energy, akin to typical M-M single-bond energies. Congruently, FTIR spectra of 4a show multiple far-IR bands within 65-200 cm-1, assignable to vCu-Au as validated by both the Harvey-Gray method of crystallographic-distance-to-force-constant correlation and dispersive density functional theory computations. Notably, the heterobimetallic complexes herein exhibit photophysical properties that are favorable to those for their homometallic congeners, due to threefold-to-twofold symmetry reduction, resulting in cuprophilic sensitization in extinction coefficient and solid-state photoluminescence quantum yields approaching unity (ΦPL = 0.90-0.97 vs. 0-0.83 for Au3 and Cu3 precursors), which bodes well for potential future utilization in inorganic and/or organic LED applications.

11.
J Am Chem Soc ; 141(28): 11298-11303, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31265284

RESUMEN

Preparing crystalline materials that produce tunable organic-based multicolor emission is a challenge due to the inherent inability to control the packing of organic molecules in the solid state. Utilizing multivariate, high-symmetry metal-organic frameworks, MOFs, as matrices for organic-based substitutional solid solutions allows for the incorporation of multiple fluorophores with different emission profiles into a single material. By combining nonfluorescent links with dilute mixtures of red, green, and blue fluorescent links, we prepared zirconia-type MOFs and found that the bulk materials exhibit features of solution-like fluorescence. Our study found that MOFs with a fluorophore link concentration of around 1 mol % exhibit fluorescence with decreased inner filtering, demonstrated by changes in spectral profiles, increased quantum yields, and lifetime dynamics expected for excited-state proton-transfer emitters. Our findings enabled us to prepare organic-based substitutional solid solutions with tunable chromaticity regulated only by the initial amounts of fluorophores. These materials emit multicolor and white light with high quantum yields (∼2-14%), high color-rendering indices (>93), long shelf life, and superb hydrolytic stability at ambient conditions.

12.
Inorg Chem ; 58(12): 8012-8020, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31185538

RESUMEN

Five ruthenium catalysts described herein facilitate self-sensitized carbon dioxide reduction to form carbon monoxide with a ruthenium catalytic center. These catalysts include four new and one previously reported CNC pincer complexes featuring a pyridinol derived N-donor and N-heterocyclic carbene (NHC) C-donors derived from imidazole or benzimidazole. The complexes have been characterized fully by spectroscopic and analytic methods, including X-ray crystallography. Introduction of a 2,2'-bipyridine (bipy) coligand and phenyl groups on the NHC ligand was necessary for rapid catalysis. [(CNC)Ru(bipy)(CH3CN)](OTf)2 is among the most active and durable photocatalysts in the literature for CO2 reduction without an external photosensitizer. The role of the structure of this complex in catalysis is discussed, including the importance of the pincer's phenyl wingtips, the bipyridyl ligand, and a weakly coordinating monodentate ligand.

13.
Inorg Chem ; 57(5): 2394-2397, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29461054

RESUMEN

A new tetradentate tripodal ligand, iPrPPPNHPyMe, and the cobalt complexes were synthesized and characterized. The well-defined cobalt complexes efficiently catalyzed acceptorless dehydrogenation of secondary alcohols into ketones.

14.
Inorg Chem ; 57(15): 8890-8902, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30024738

RESUMEN

Macrocyclic ligands have been explored extensively as scaffolds for transition metal catalysts for oxygen and hydrogen atom transfer reactions. C-C reactions facilitated using earth abundant metals bound to macrocyclic ligands have not been well-understood but could be a green alternative to replacing the current expensive and toxic precious metal systems most commonly used for these processes. Therefore, the yields from direct Suzuki-Miyaura C-C coupling of phenylboronic acid and pyrrole to produce 2-phenylpyrrole facilitated by eight high-spin iron complexes ([Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+, [Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+) were compared to identify the effect of structural and electronic properties on catalytic efficiency. Specifically, catalyst complexes were compared to evaluate the effect of five properties on catalyst reaction yields: (1) the coordination requirements of the catalyst, (2) redox half-potential of each complex, (3) topological constraint/rigidity, (4) N atom modification(s) increasing oxidative stability of the complex, and (5) geometric parameters. The need for two labile cis-coordination sites was confirmed based on a 42% decrease in catalytic reaction yield observed when complexes containing pentadentate ligands were used in place of complexes with tetradentate ligands. A strong correlation between iron(III/II) redox potential and catalytic reaction yields was also observed, with [Fe2+L6(Cl)2] providing the highest yield (81%, -405 mV). A Lorentzian fitting of redox potential versus yields predicts that these catalysts can undergo more fine-tuning to further increase yields. Interestingly, the remaining properties explored did not show a direct, strong relationship to catalytic reaction yields. Altogether, these results show that modifications to the ligand scaffold using fundamental concepts of inorganic coordination chemistry can be used to control the catalytic activity of macrocyclic iron complexes by controlling redox chemistry of the iron center. Furthermore, the data provide direction for the design of improved catalysts for this reaction and strategies to understand the impact of a ligand scaffold on catalytic activity of other reactions.

15.
Molecules ; 23(2)2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443883

RESUMEN

N-Substituted pyridinium salts constitute one of the most valuable reagent classes in organic synthesis, due to their versatility and ease of use. Herein we report a preliminary synthesis and detailed structural analysis of several N-(1-ethoxyvinyl)pyridinium triflates, an unusual class of pyridinium salts with potentially broad use as a reagent in organic synthesis. Treatment of pyridines with trifluoromethane sulfonic acid and ethoxyacetylene generates stable, isolable adducts which have been extensively characterized, due to their novelty. Three-dimensional structural stability is perpetuated by an array of C-H•••O hydrogen bonds involving oxygen atoms from the -SO3 groups of the triflate anion, and hydrogen atoms from the aromatic ring and vinyl group of the pyridinium cation. Predictions from density functional theory calculations of the energy landscape for rotation about the exocyclic C-N bond of 2-chloro-1-(1-ethoxyvinyl)pyridine-1-ium trifluoromethanesulfonate (7) and 1-(1-ethoxyvinyl)pyridine-1-ium trifluoromethanesulfonate (16) are also reported. Notably, the predicted global energy minimum of 7 was nearly identical to that found within the crystal structure.


Asunto(s)
Mesilatos/química , Piridinas/química , Compuestos de Piridinio/química , Enlace de Hidrógeno , Mesilatos/síntesis química , Modelos Moleculares , Estructura Molecular , Oxígeno/química , Piridinas/síntesis química , Compuestos de Piridinio/síntesis química , Sales (Química)/química
16.
Angew Chem Int Ed Engl ; 57(21): 6247-6250, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29607597

RESUMEN

Metal oxo clusters and metal oxides assemble and precipitate from water in processes that depend on pH, temperature, and concentration. Other parameters that influence the structure, composition, and nuclearity of "molecular" and bulk metal oxides are poorly understood, and have thus not been exploited. Herein, we show that Bi3+ drives the formation of aqueous Fe3+ clusters, usurping the role of pH. We isolated and structurally characterized a Bi/Fe cluster, Fe3 BiO2 (CCl3 COO)8 (THF)(H2 O)2 , and demonstrated its conversion into an iron Keggin ion capped by six Bi3+ irons (Bi6 Fe13 ). The reaction pathway was documented by X-ray scattering and mass spectrometry. Opposing the expected trend, increased cluster nuclearity required a pH decrease instead of a pH increase. We attribute this anomalous behavior of Bi/Fe(aq) solutions to Bi3+ , which drives hydrolysis and condensation. Likewise, Bi3+ stabilizes metal oxo clusters and metal oxides in strongly acidic conditions, which is important in applications such as water oxidation for energy storage.

17.
J Am Chem Soc ; 139(41): 14807-14814, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28945370

RESUMEN

The discovery of thermal and photochemical control by Woodward and Hoffmann revolutionized how we understand chemical reactivity. Similarly, we now describe the first example of a carbene that exhibits differing thermal and photochemical reactivity. When a singlet ground-state N,N'-diamidocarbene 1 was photolyzed at 380 nm, excitation to a triplet state was observed. The triplet-state electronic structure was characteristic of the expected biradical σ1pπ1 spin configuration according to a combination of spectroscopic and computational methods. Surprisingly, the triplet state of 1 was found to engage a series of arenes in thermally reversible Büchner ring expansion reactions, marking the first examples where both cyclopropanation and ring expansion of arenes were rendered reversible. Not only are these photochemical reactions different from the known thermal chemistry of 1, but the reversibility enabled us to perform the first examples of photochemically induced arene exchange/expansion reactions at a single carbon center.

18.
J Org Chem ; 82(9): 4924-4929, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28397495

RESUMEN

We report here the first systematic study of nickel-catalyzed decarbonylation of aromatic aldehydes under relatively mild conditions. Aldehydes with electron donating groups at para and ortho positions are generally successful with our method. For aldehydes with electron-withdrawing groups, significantly higher yields were achieved for ortho-substituted substrates than para ones, probably due to the effects of steric hindrance or electron donors at the ortho position to suppress the Tishchenko reaction, an undesirable side reaction toward homocoupled esters.

20.
J Am Chem Soc ; 136(46): 16185-200, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25245381

RESUMEN

The diimine-dithiolato ambipolar complexes Pt(dbbpy)(tdt) and Pt(dmecb)(bdt) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; tdt(2-) = 3,4-toluenedithiolate; dmecb = 4,4'-dimethoxyester-2,2'-bipyridine; bdt(2-) = benzene-1,2-dithiolate) are prepared herein. Pt(dmecb)(bdt) exhibits photoconductivity that remains constant (photocurrent density of 1.6 mA/cm(2) from a 20 nm thin film) across the entire visible region of the solar spectrum in a Schottky diode device structure. Pt(dbbpy)(tdt) acts as donor when combined with the strong nitrofluorenone acceptors 2,7-dinitro-9-fluorenone (DNF), 2,4,7-trinitro-9-fluorenone (TRNF), or 2,4,5,7-tetranitro-9-fluorenone (TENF). Supramolecular charge transfer stacks form and exhibit various donor-acceptor stacking patterns. The crystalline solids are "black absorbers" that exhibit continuous absorptions spanning the entire visible region and significant ultraviolet and near-infrared wavelengths, the latter including long wavelengths that the donor or acceptor molecules alone do not absorb. Absorption spectra reveal the persistence of donor-acceptor interactions in solution, as characterized by low-energy donor/acceptor charge transfer (DACT) bands. Crystal structures show closely packed stacks with distances that underscore intermolecular DACT. (1)H NMR provides further evidence of DACT, as manifested by upfield shifts of aromatic protons in the binary adducts versus their free components, whereas 2D nuclear Overhauser effect spectroscopy (NOESY) spectra suggest coupling between dithiolate donor protons with nitrofluorenone acceptor protons, in correlation with the solid-state stacking. The NMR spectra also show significant peak broadening, indicating some paramagnetism verified by magnetic susceptibility data. Solid-state absorption spectra reveal further red shifts and increased relative intensities of DACT bands for the solid adducts vs solution, suggesting cooperativity of the DACT phenomenon in the solid state, as further substantiated by νC-O and νN-O IR bands and solid-state tight-binding computational analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA