Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int Microbiol ; 25(3): 561-570, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35305184

RESUMEN

Science is based on evidence that can be measured or observed through methodical techniques which are expressed in several ways, either quantitatively or qualitatively. Technical photograph becomes one of the most important key tools to disclose experimental results. In microbiological research, several pieces of evidence can be indicated with parameters that are deeply related to culture media; pH and color variation, halo formation, overlay of structures, culture shape, among others. The employment of technical photographs as a strategy of the experimental observation and reliable representation is indispensable. The protocol presented here suggests the production of photographic support in microbiological assays in Petri dishes taken by smartphone to obtain high-quality images, besides showing tools to edit images using PowerPoint. The support is composed of a paper tube with a transparent border, whose reduced light penetration avoiding light reflection over the Petri dishes or the culture media. The edition consists of photograph variation, and in clipping and pasting on uniform backgrounds to provide further detailing. The protocol allowed a standardized photograph collection in high quality, which is ideal for a comparative portrait of microbiological behaviors. The image editing enabled a framework and greater visibility of physical and biological structures in the exhibition of photographs inside the manuscript, such as the removal of noises, background alterations, deformities or irregularities. This protocol is an intelligent and cheap tool to help researcher on the knowledge-obtaining process, and it is applied to different experiments or adapted into the most variable research subjects.


Asunto(s)
Medios de Cultivo , Humanos
2.
Ecotoxicol Environ Saf ; 209: 111772, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33316726

RESUMEN

There are conclusive evidences of selenium (Se) deficiency in Brazilian soils and foods. Brazil is the largest producer and consumer of coffee worldwide, which favors agronomic biofortification of its coffee. This study aimed to evaluate effects of foliar application of three formulations and six rates of Se on antioxidant metabolism, agronomic biofortification and yield of coffee beans. Seven Se concentrations (0, 10, 20, 40, 80, 100 and 160 mg L-1) were applied from three formulations of Se (sodium selenate, nano-Se 1500, and nano-Se 5000). Selenium application up to 40 mg L-1 increased the concentration of photosynthetic pigments such as chlorophylls, pheophytins and carotenoids in coffee leaves. Foliar application of Se ranging from 20 to 80 mg L-1 decreased lipid peroxidation and concentration of hydrogen peroxide, but increased superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities in coffee leaves. These results indicated that foliar Se application stimulates antioxidative metabolism to mitigate reactive oxygen species. Foliar application of 20 mg Se L-1 of sodium selenate increased coffee yield by 38%, and 160 mg Se L-1 of nano-Se 5000 increased dramatically coffee yield by 42%. Selenium concentration in grains ranged from 0.116 to 4.47 mg kg-1 (sodium selenate), 4.84 mg kg-1 (nano-Se 1500) and 5.82 mg kg-1 (nano-Se 5000). The results suggest the beneficial effect of Se on the increment of photosynthetic pigments, antioxidative metabolism, increased coffee yield and nutritional quality of grains. The recommended foliar Se application in this study can mitigate abiotic stressors such as high temperatures resulting in higher yield of coffee plants.


Asunto(s)
Antioxidantes/farmacología , Café/fisiología , Especies Reactivas de Oxígeno/metabolismo , Selenio/farmacología , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Biofortificación/métodos , Catalasa/metabolismo , Clorofila/metabolismo , Coffea , Peroxidación de Lípido , Oxidación-Reducción , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Ácido Selénico/metabolismo , Superóxido Dismutasa/metabolismo
3.
Ecotoxicol Environ Saf ; 207: 111216, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916525

RESUMEN

Low concentrations of selenium (Se) are beneficial for plant growth. Foliar Se application at high concentrations is toxic to plants due to the formation of reactive oxygen species (ROS). This study characterized Se toxicity symptoms using X-ray fluorescence (XRF) technique in response to foliar Se application in cowpea plants. Five Se concentrations (0, 10, 25, 50, 100 e 150 g ha-1) were sprayed on leaves as sodium selenate. The visual symptoms of Se toxicity in cowpea leaves were separated into two stages: I) necrotic points with an irregular distribution and internerval chlorosis at the leaf limb border (50-100 g ha-1); II) total chlorosis with the formation of dark brown necrotic lesions (150 g ha-1). Foliar Se application at 50 g ha-1 increased photosynthetic pigments and yield. Ultrastructural analyses showed that Se foliar application above 50 g ha-1 disarranged the upper epidermis of cowpea leaves. Furthermore, Se application above 100 g ha-1 significantly increased the hydrogen peroxide concentration and lipid peroxidation inducing necrotic leaf lesions. Mapping of the elements in leaves using the XRF revealed high Se intensity, specifically in leaf necrotic lesions accompanied by calcium (Ca) as a possible attenuating mechanism of plant stress. The distribution of Se intensities in the seeds was homogeneous, without specific accumulation sites. Phosphorus (P) and sulfur (S) were found primarily located in the embryonic region. Understanding the factors involved in Se accumulation and its interaction with Ca support new preventive measurement technologies to prevent Se toxicity in plants.


Asunto(s)
Selenio/metabolismo , Vigna/metabolismo , Peroxidación de Lípido , Fósforo/análisis , Fotosíntesis , Hojas de la Planta/química , Semillas/química , Ácido Selénico/análisis , Selenio/análisis , Azufre/análisis
4.
Ecotoxicol Environ Saf ; 212: 111962, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33550082

RESUMEN

The production of cucumber under combined salinity and heat stress is a crucial challenge facing many countries particularly in arid environments. This challenge could be controlled through exogenous foliar application of some bio-stimulants or anti-stressors. This study was carried out to investigate the management and improving cucumber production under combined salinity and heat stress. Nano-selenium (nano-Se, 25 mg L-1), silicon (Si, 200 mg L-1) and hydrogen peroxide (H2O2, 20 mmol L-1) were foliar applied on cucumber plants as anti-stress compounds. The results revealed that studied anti-stressors improved growth and productivity of cucumber grown in saline soil regardless the kind of anti-stressor under heat stress. The foliar application of nano-Se (25 mg L-1) clearly improved cucumber growth parameters (plant height and leaf area) compared to other anti-stressor and control. Foliar Si application showed the greatest impact on enzymatic antioxidant capacities among the other anti-stressor treatments. This applied rate of Si also showed the greatest increase in marketable fruit yield and yield quality (fruit firmness and total soluble solids) compared to untreated plants. These increases could be due to increasing nutrient uptake particularly N, P, K, and Mg, as well as Se (by 40.2% and 43%) in leaves and Si (by 11.2% and 22.1% in fruits) in both seasons, respectively. The potential role of Si in mitigating soil salinity under heat stress could be referred to high Si content found in leaf which regulates water losses via transpiration as well as high nutrient uptake of other nutrients (N, P, K, Mg and Se). The distinguished high K+ content found in cucumber leaves might help stressed plants to tolerate studied stresses by regulating the osmotic balance and controlling stomatal opening, which support cultivated plants to adapt to soil salinity under heat stress. Further studies are needed to be carried out concerning the different response of cultivated plants to combined stresses.


Asunto(s)
Selenio , Silicio , Antioxidantes , Cucumis sativus/crecimiento & desarrollo , Frutas , Respuesta al Choque Térmico/fisiología , Peróxido de Hidrógeno , Hojas de la Planta , Salinidad , Suelo
5.
Ecotoxicol Environ Saf ; 207: 111225, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916526

RESUMEN

Hormesis is a favorable response to low level exposures to substance or to adverse conditions. This phenomenon has become a target to achieve greater crop productivity. This review aimed to address the physiological mechanisms for the induction of hormesis in plants. Some herbicides present a hormetic dose response. Among them, those with active ingredients glyphosate, 2,4-D and paraquat. The application of glyphosate as a hormesis promoter is therefore showing promess . Glyphosate has prominent role in shikimic acid pathway, decreasing lignin synthesis resulting in improved growth and productivity of several crops. Further studies are still needed to estimate optimal doses for other herbicides of crops or agricultural interest. Biostimulants are also important, since they promote effects on secondary metabolic pathways and production of reactive oxygen species (ROS). When ROS are produced, hydrogen peroxide act as a signaling molecule that promote cell walls malleability allowing inward water transport causing cell expansion. . Plants'ability to overcome several abiotic stress conditions is desirable to avoid losses in crop productivity and economic losses. This review compiles information on how hormesis in plants can be used to achieve new production levels.


Asunto(s)
Hormesis/fisiología , Fenómenos Fisiológicos de las Plantas , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Glicina/análogos & derivados , Herbicidas/farmacología , Hormesis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glifosato
6.
Arch Microbiol ; 202(3): 645-656, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31776586

RESUMEN

This study aimed to evaluate the effects of seed inoculation with Bradyrhizobium sp. and co-inoculation with Azospirillum brasilense. The seed treatments were as follows: control (without inoculation); A. brasilense (2 mL per kg-1 of seed); A. brasilense (4 mL per kg-1 of seed); Bradyrhizobium sp. (2 mL per kg-1 of seed); Bradyrhizobium sp. (4 mL per kg-1 of seed); A. brasilense + Bradyrhizobium sp. (2 mL of each strain per kg-1 of seed); and A. brasilense + Bradyrhizobium sp. (4 mL of each strain per kg-1 of seed). Peanut plants from seeds inoculated with Bradyrhizobium sp. and A. brasilense exhibited highest leaf concentration of photosynthetic pigments, carotenoids, nitrate, ammonia and amino acids. The inoculation of seeds with Bradyrhizobium sp. resulted in plants with increased concentrations of total soluble sugars, and ureides compared to the untreated plants. In contrast, seeds treated with A. brasilense alone resulted in plants exhibiting highest concentration of amino acids, which represent the highest concentration of nitrogen compounds in peanut plants. Seed inoculation with Bradyrhizobium sp. at a rate of 2 mL kg-1 was identified as the best treatment to promote increased biological nitrogen fixation and generate higher peanut yields.


Asunto(s)
Arachis/microbiología , Bradyrhizobium/fisiología , Semillas/crecimiento & desarrollo , Urea/metabolismo , Inoculantes Agrícolas/fisiología , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Azospirillum brasilense/fisiología , Fijación del Nitrógeno , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Semillas/metabolismo , Semillas/microbiología , Urea/química
7.
Ecotoxicol Environ Saf ; 201: 110777, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32485493

RESUMEN

Selenium (Se) is a beneficial element to higher plants. Application of Se at low concentrations enhances the antioxidant metabolism reducing the reactive oxygen species (ROS) generated by plant membrane cells. This study aimed to evaluate how the application of Se in the forms sodium selenate and sodium selenite regulates ROS scavenging in field-grown cowpea plants. Seven Se application rates (0; 2.5; 5; 10; 20; 40 and 60 g ha-1) of each of the two Se forms were applied to plants via the soil. Photosynthetic pigments concentration, gas exchange parameters, lipid peroxidation by malondialdehyde (MDA) concentration, hydrogen peroxide concentration, activity of catalase (CAT, EC:1.11.1.6), glutathione reductase (GR, EC:1.6.4.2), ascorbate peroxidase (APX, EC:1.11.1.11) and Se concentration in leaves and grains were evaluated. In general, Se application led to a decrease in chlorophyll a concentration whilst leading to an increase in chlorophyll b, indicating conservation of total chlorophyll concentration. Application of 2.5 g ha-1 of Se as selenate provided a notable increase in total chlorophyll and total carotenoids compared to the other application rates. Selenate and selenite application decreased lipid peroxidation. However, each Se source acted in a different pathway to combat ROS. While selenate showed more potential to increase activity of APX and GR, selenite showed a higher potential to increase CAT activity. The negative correlation between CAT and GR is indicative that both pathways might be activated under distinct circumstances. The more prominent activity of CAT under high rates of selenite resulted in a negative correlation of this enzyme with chlorophyll a and carotenoids. Both selenate and selenite application increased sucrose and total sugars concentration in leaves of cowpea plants. Overall, these results indicate that application of Se in cowpea under field conditions stimulates distinct pathways to scavenge ROS. This could prove beneficial to mitigate oxidative stress during plant development.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Ácido Selénico/toxicidad , Ácido Selenioso/toxicidad , Vigna/efectos de los fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Clorofila , Clorofila A , Glutatión Reductasa/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Ácido Selénico/metabolismo , Ácido Selenioso/metabolismo , Selenio/metabolismo , Selenito de Sodio , Vigna/metabolismo , Vigna/fisiología
8.
Ecotoxicol Environ Saf ; 202: 110916, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800251

RESUMEN

Selenium (Se) at low concentration is considered benefit element to plants. The range between optimal and toxic concentration of Se is narrow and varies among plant species. This study aimed to evaluate the phenotypic, physiological and biochemical responses of four rice genotypes (BRS Esmeralda, BRSMG Relâmpago, BRS Bonança and Bico Ganga) grown hydroponically treated with sodium selenate (1.5 mM L-1). Selenium treated plants showed a dramatically decrease of soluble proteins, chlorophylls, and carotenoids concentration, resulting in the visual symptoms of toxicity characterized as leaf chlorosis and necrosis. Selenium toxicity caused a decrease on shoot and root dry weight of rice plants. Excess Se increased the oxidative stress monitored by the levels of hydrogen peroxide and lipid peroxidation. The enzymatic antioxidant system (catalase, superoxide dismutase, and ascorbate peroxidase) increased in response to Se supply. Interestingly, primary metabolism compounds such as sucrose, total sugars, nitrate, ammonia and amino acids increased in Se-treated plants. The increase in these metabolites may indicate a defense mechanism for the osmotic readjustment of rice plants to mitigate the toxicity caused by Se. However, these metabolites were not effective to minimize the damages on phenotypic traits such as leaf chlorosis and reduced shoot and root dry weight in response to excess Se. Increased sugars profile combined with antioxidant enzymes activities can be an effective biomarkers to indicate stress induced by Se in rice plants. This study shows the physiological attributes that must be taken into account for success in the sustainable cultivation of rice in environments containing excess Se.


Asunto(s)
Oryza/fisiología , Selenio/toxicidad , Contaminantes del Suelo/toxicidad , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Hidroponía , Peroxidación de Lípido , Oryza/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/metabolismo , Ácido Selénico/metabolismo , Superóxido Dismutasa/metabolismo
9.
Ecotoxicol Environ Saf ; 203: 111016, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888590

RESUMEN

Selenium (Se) is considered a beneficial element to higher plants based on its regulation of antioxidative system under abiotic or biotic stresses. However, the limit of beneficial and toxic physiological effects of Se is very narrow. In the present study, the antioxidant performance, nutritional composition, long-distance transport of Se, photosynthetic pigments, and growth of Coffea arabica genotypes in response to Se concentration in solution were evaluated. Five Coffea arabica genotypes (Obatã, IPR99, IAC125, IPR100 and Catucaí) were used, which were grown in the absence and presence of Se (0 and 1.0 mmol L-1) in nutrient solution. The application of 1 mmol L-1 Se promoted root browning in all genotypes. There were no visual symptoms of leaf toxicity, but there was a reduction in the concentration of phosphorus and sulfur in the shoots of plants exposed to high Se concentration. Except for genotype Obatã, the coffee seedlings presented strategies for regulating Se uptake by reducing long-distance transport of Se from roots to shoots. The concentrations of total chlorophyll, total pheophytin, and carotenoids were negatively affected in genotypes Obatã, IPR99, and IAC125 upon exposure to Se at 1 mmol L-1. H2O2 production was reduced in genotypes IPR99, IPR100, and IAC125 upon exposure to Se, resulting in lower activity of superoxide dismutase (SOD), and catalase (CAT). These results suggest that antioxidant metabolism was effective in regulating oxidative stress in plants treated with Se. The increase in sucrose, and decrease in SOD, CAT and ascorbate peroxidase (APX) activities, as well as Se compartmentalization in the roots, were the main biochemical and physiological modulatory effects of coffee seedlings under stress conditions due to excess of Se.


Asunto(s)
Antioxidantes/metabolismo , Coffea/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Coffea/genética , Coffea/metabolismo , Coffea/fisiología , Genotipo , Oxidación-Reducción , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Selenio/análisis , Selenio/metabolismo , Especificidad de la Especie
10.
Ecotoxicol Environ Saf ; 190: 110147, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918255

RESUMEN

Selenium (Se) is an essential element for human and animal, although considered beneficial to higher plants. Selenium application at high concentration to plants can cause toxicity decreasing the physiological quality of seeds. This study aimed to characterize the Se toxicity on upland rice yield, seed physiology and the localization of Se in seeds using X-ray fluorescence microanalysis (µ-XRF). In the flowering stage, foliar application of Se (0, 250, 500, 1000, 1500, 2000 g ha-1) as sodium selenate was performed. A decrease in rice yield and an increase in seed Se concentrations were observed from 250 g Se ha-1. The storage proteins in the seeds showed different responses with Se application (decrease in albumin, increase in prolamin and glutelin). There was a reduction in the concentrations of total sugars and sucrose with the application of 250 and 500 g Se ha-1. The highest intensities Kα counts of Se were detected mainly in the endosperm and aleurone/pericarp. µ-XRF revealed the spatial distribution of sulfur, calcium, and potassium in the seed embryos. The seed germination decreased, and the electrical conductivity increased in response to high Se application rates showing clearly an abrupt decrease of physiological quality of rice seeds. This study provides information for a better understanding of the effects of Se toxicity on rice, revealing that in addition to the negative effects on yield, there are changes in the physiological and biochemical quality of seeds.


Asunto(s)
Oryza/fisiología , Selenio/toxicidad , Contaminantes del Suelo/toxicidad , Animales , Endospermo , Glútenes , Humanos , Nutrientes , Oryza/metabolismo , Proteínas de Plantas , Semillas/efectos de los fármacos , Semillas/fisiología , Ácido Selénico/análisis , Azufre/metabolismo
11.
Ecotoxicology ; 29(5): 594-606, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32333252

RESUMEN

Cadmium (Cd) is probably the most damaging metal to plant species; with a long biological half-life, it can be taken up by plants, disrupting the cell homeostasis and triggering several metabolic pathways. Selenium (Se) improves plant defence systems against stressful conditions, but the biochemical antioxidant responses to Cd stress in tomato plants is poorly understood. To further address the relationship of Cd-stress responses with Se mineral uptake, Cd and Se concentration, proline content, MDA and H2O2 production, and the activity of SOD, APX, CAT and GR enzymes were analyzed in Micro-Tom (MT) plants submitted to 0.5 mM Cd. The results revealed different responses according to Se combination and Cd application. For instance, roots and leaves of MT plants treated with Se exhibited an increase in dry mass and nutritional status, exhibited lower proline content and higher APX and GR activities when compared with plants with no Se application. Plants submitted to 0.5 mM Cd, irrespective of Se exposure, exhibited lower proline, MDA and H2O2 content and higher SOD, CAT and GR activities. Selenium may improve tolerance against Cd, which allowed MT plants exhibited less oxidative damage to the cell, even under elevated Cd accumulation in their tissues. The results suggest that Se application is an efficient management technique to alleviate the deleterious effects of Cd-stress, enhancing the nutritional value and activity of ROS-scavenging enzymes in tomato plants.


Asunto(s)
Cadmio/toxicidad , Estrés Oxidativo/fisiología , Selenio/metabolismo , Contaminantes del Suelo/toxicidad , Solanum lycopersicum/fisiología , Antioxidantes , Glutatión , Peróxido de Hidrógeno , Oxidación-Reducción , Hojas de la Planta , Raíces de Plantas
12.
J Sci Food Agric ; 100(5): 1990-1997, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31849063

RESUMEN

BACKGROUND: Selenium (Se) is an essential element for humans and animals. Rice is one of the most commonly consumed cereals in the world, so the agronomic biofortification of cereals with Se may be a good strategy to increase the levels of daily intake of Se by the population. This study evaluated the agronomic biofortification of rice genotypes with Se and its effects on grain nutritional quality. Five rates of Se (0, 10, 25, 50, and 100 g ha -1 ) were applied as selenate via the soil to three rice genotypes under field conditions. RESULTS: Selenium concentrations in the leaves and polished grains increased linearly in response to Se application rates. A highly significant correlation was observed between the Se rates and the Se concentration in the leaves and grains, indicating high translocation of Se. The application of Se also increased the concentration of albumin, globulin, prolamin, and glutelin in polished grains. CONCLUSION: Biofortifying rice genotypes using 25 g Se ha -1 could increase the average daily Se intake from 4.64 to 66 µg day-1 . Considering that the recommended daily intake of Se by adults is 55 µg day-1 , this agronomic strategy could contribute to alleviating widespread Se malnutrition. © 2019 Society of Chemical Industry.


Asunto(s)
Oryza/química , Proteínas de Almacenamiento de Semillas/análisis , Selenio/análisis , Biofortificación , Fertilizantes/análisis , Genotipo , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/química , Semillas/genética , Semillas/metabolismo , Selenio/metabolismo
13.
Physiol Plant ; 166(4): 996-1007, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30515843

RESUMEN

The fragmentary information on phosphorus (P) × zinc (Zn) interactions in plants warrants further study, particularly in plants known for their high P and Zn requirements, such as cotton (Gossypium hirsutum L.). The objective of this study was to investigate the effect of P × Zn interactions in a modern cultivar of cotton grown hydroponically. Biomass, mineral nutrition and photosynthetic parameters were monitored in plants receiving contrasting combinations of P and Zn supply. Root biomass, length and surface area were similar in plants with low P and/or low Zn supply to those in plants grown with high P and high Zn supply, reflecting an increased root/shoot biomass quotient when plants lack sufficient P or Zn for growth. Increasing P supply and reducing Zn supply increased shoot P concentrations, whilst shoot Zn concentrations were influenced largely by Zn supply. A balanced P × Zn supply (4 mM P × 4 µM Zn) enabled greatest biomass accumulation, while an imbalanced supply of these nutrients led to Zn deficiency, P toxicity or Zn toxicity. Net photosynthetic rate, stomatal conductance, transpiration rate and instantaneous carboxylation efficiency increased as P or Zn supply increased. Although increasing P supply reduced the P-use efficiency in photosynthesis (PUEP) and increasing Zn supply reduced the Zn-use efficiency in photosynthesis (ZnUEP), increasing Zn supply at a given P supply increased PUEP and increasing P supply at a given Zn supply increased ZnUEP. These results suggest that agricultural management strategies should seek for balanced mineral nutrition to optimize yields and resource-use efficiencies.


Asunto(s)
Gossypium/metabolismo , Fósforo/metabolismo , Zinc/metabolismo , Biomasa , Gossypium/fisiología , Fotosíntesis/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología
14.
Ecotoxicol Environ Saf ; 170: 578-589, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30576893

RESUMEN

Lettuce (Lactuca sativa L.) is known to have high cadmium (Cd) concentrations in its shoots, which makes it necessary to protect against Cd toxicity. Understanding Cd-induced physiological responses in lettuce plants can contribute to the definition of useful strategies to decrease Cd uptake. This study aimed to gain new insights into Cd-induced stress by measuring Cd bioaccumulation, nutrient composition, anatomical and ultrastructural changes, and antioxidative metabolism in three lettuce genotypes characterized as having different degrees of Cd tolerance (Vanda = low, Lidia = medium and Stela = high). Plants were grown hydroponically with Cd concentrations of 0.0 and 0.1 or 0.5 µmol L-1, for 30 days. Cadmium uptake in the lettuce genotypes assayed is controlled by the root/shoot ratio, higher root/shoot ratios allowing greater Cd uptake. The Fe and Ni content increased in shoots of the genotype Lidia, which could be associated with a decrease in oxidative stress in chloroplasts due to superoxide dismutase (SOD) isozyme activity. Cadmium-induced oxidative stress is associated with de-structuring of the phloem and xylem in roots, and starch grain and plastoglobule accumulation in chloroplasts. Lettuce genotypes that presented higher SOD and ascorbate peroxidase (APX) activity presented better preserved anatomical structures. These results suggest that genotypes with less efficient antioxidant defence in the roots tend to take up more Cd, increasing root-to-shoot Cd translocation.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/metabolismo , Lactuca , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Cadmio/toxicidad , Genotipo , Lactuca/efectos de los fármacos , Lactuca/metabolismo , Lactuca/ultraestructura , Estrés Oxidativo/genética , Contaminantes del Suelo/toxicidad , Especificidad de la Especie
15.
J Food Sci Technol ; 56(2): 1073-1077, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30906065

RESUMEN

Consumed by populations in South America, Araucaria angustifolia seeds have received little study regarding elemental composition and nutritional value. Thirty-five seed sites from subtropical Brazil were sampled and seed concentrations of C, N, K, Ca, Mg, P, Fe, Zn, Mn, Cu, Mo, Ni, Co, Cr, Ba, and Cd were determined. The highest concentration of N was observed in samples from regions with Cfa climate (humid subtropical, oceanic climate, without dry season with hot summer) and igneous rock, which was superior to regions with Cfb climate (humid subtropical, oceanic climate, without dry season with temperate summer) and metamorphic rock. Seeds can be a source of nutrients: K (11.8 g kg-1), P (4.1 g kg-1), Mn (9.1 mg kg-1), Cu (7.2 mg kg-1), Mo (0.93 mg kg-1), and Cr (0.65 mg kg-1). Values for Ba (0.93 mg kg-1) and Cd (0.19 mg kg-1) indicated no risk to human health. This study expands knowledge regarding the elemental composition of A. angustifolia. Results indicate that these seeds have nutritional value, and their consumption can be a good strategy to improve overall human nutrition in this region of South America.

16.
Ecotoxicol Environ Saf ; 164: 562-570, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30149355

RESUMEN

Selenium (Se) is essential to humans and animals due to its antioxidant properties. Although it is not considered an essential nutrient for higher plants. Many studies show that Se in low concentrations (up to 0.5 mg kg-1) provides beneficial effects to non-hyperaccumulating plants by participating in antioxidant defense systems and enhancing tolerance to abiotic stress. Therefore, this study aimed to evaluate the effects of Se application rates on rice plants under different soil water conditions. The experiment was conducted on an Oxisol using four Se rates (0, 0.5, 1.0 and 2.0 mg kg-1) and two soil water conditions (irrigated and water deficit). Selenium application via soil up to 0.5 mg kg-1 increased the plant height, chlorophyll index, sulfur and copper accumulation in shoots, carbon dioxide assimilation, superoxide dismutase (EC 1.15.1.1) activity and decreased the hydrogen peroxide concentration in rice leaves. The accumulation of Se in shoot biomass and Se concentration in seeds increased linearly with the applied rates. Water deficit strongly decreased the plant growth and yield. However, rice plants treated with Se showed higher net photosynthesis, water use efficiency and antioxidant system. This study provides useful information about the roles of Se in protecting rice plants from water deficit stress.


Asunto(s)
Oryza/efectos de los fármacos , Selenio/farmacología , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/farmacología , Biomasa , Clorofila/metabolismo , Cobre/metabolismo , Oryza/metabolismo , Oryza/fisiología , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Semillas/efectos de los fármacos , Semillas/fisiología , Suelo/química , Azufre/metabolismo , Agua/metabolismo
17.
Sci Rep ; 14(1): 10556, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719847

RESUMEN

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Asunto(s)
Fertilizantes , Glycine max , Níquel , Suelo , Glycine max/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Fertilizantes/análisis , Suelo/química , Ureasa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Fijación del Nitrógeno/efectos de los fármacos , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Agricultura/métodos
18.
Bull Environ Contam Toxicol ; 91(6): 718-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24042843

RESUMEN

This study proposes a new treatment method to decompose persistent chemicals such as pentachlorophenol (PCP) in water, utilizing hydrogen peroxide present in aquatic plants to proceed the biological Fenton reaction. PCP was not effectively removed by aquatic plants. However, by adding 2.8 mM of Fe(2+), there was a rapid removal of PCP while at the same time consumption of endogenous hydrogen peroxide occurred. It was observed the increase of chloride ions formation in water-confirming the complete degradation of PCP. These results demonstrated that PCP was oxidized through a biological Fenton reaction, and hydrogen peroxide in aquatic plants was a key endogenous substance in treatment of refractory toxic pollutants.


Asunto(s)
Pentaclorofenol/metabolismo , Plaguicidas/metabolismo , Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Cinética , Oxidación-Reducción , Pentaclorofenol/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis
19.
Plant Physiol Biochem ; 202: 107970, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37625254

RESUMEN

Under conditions of abiotic stress several physiological and biochemical processes in plants can be modified. The production of reactive oxygen species (ROS) is toxic at high concentrations and promotes RNA, DNA and plant cell membrane degradation. Plants have enzymatic and non-enzymatic adaptation mechanisms to act against ROS detoxification. Ascorbic acid (AsA) is the non-enzymatic compound essential for several biological functions, which acts in the elimination and balance of ROS production and with the potential to promote several physiological functions in plants, such as the photosynthetic process. For plant development, AsA plays an important role in cell division, osmotic adjustment, hormone biosynthesis, and as an enzymatic cofactor. In this review, the redox reactions, biosynthetic pathways, and the physiological and biochemical functions of AsA against abiotic stress in plants are discussed. The concentration of AsA in plants can vary between species and depend on the biosynthetic pathways d-mannose/l-galactose, d-galacturonate, euglenids, and d-glucuronate. Although the endogenous levels of AsA in plants are used in large amounts in cell metabolism, the exogenous application of AsA further increases these endogenous levels to promote the antioxidant system and ameliorate the effects produced by abiotic stress. Foliar application of AsA promotes antioxidant metabolism in plants subjected to climate change conditions, also allowing the production of foods with higher nutritional quality and food safety, given the fact that AsA is biologically essential in the human diet.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Humanos , Especies Reactivas de Oxígeno , Aclimatación , División Celular
20.
Plant Physiol Biochem ; 201: 107798, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301189

RESUMEN

Selenium (Se) beneficial effect on plants is related to an increase in nitrogen (N) assimilation and its role as an abiotic stress mitigator by reactive oxygen species (ROS) scavenging enhanced by antioxidant metabolism. This study aimed to evaluate sugarcane (Saccharum spp.) growth, photosynthetic and antioxidant responses, and sugar accumulation in response to Se supply. The experimental design was a factorial scheme 2 × 4: two sugarcane varieties (RB96 6928 and RB86 7515) and four Se application rates (0; 5; 10 and 20 µmol L-1) applied as sodium selenate in the nutrient solution. Leaf Se concentration increased under Se application in both varieties. The enzymes SOD (EC 1.15.1.1) and APX (EC 1.11.1.11) showed increase activities under Se application on variety RB96 6928. Nitrate reductase activity increased in both varieties resulting in the conversion of nitrate into higher total amino acids concentration indicating an enhanced N assimilation. This led to an increased concentration of chlorophylls and carotenoids, increased CO2 assimilation rate, stomatal conductance, and internal CO2 concentration. Selenium provided higher starch accumulation and sugar profiles in leaves boosting plant growth. This study shows valuable information regarding the role of Se on growth, photosynthetic process, and sugar accumulation in sugarcane leaves, which could be used for further field experiments. The application rate of 10 µmol Se L-1 was the most adequate for both varieties studied considering the sugar concentration and plant growth.


Asunto(s)
Saccharum , Selenio , Selenio/metabolismo , Antioxidantes/metabolismo , Saccharum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Carbono/metabolismo , Grano Comestible/metabolismo , Azúcares/metabolismo , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA