Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Biol Sci ; 289(1976): 20220804, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703053

RESUMEN

Sponge fossils from the Cambrian black shales have attracted attention from both palaeontologists and geochemists for many years in terms of their high diversity, beautiful preservation and perplexing adaptation to inhospitable living environments. However, the body shape of these sponges, which contributes to deciphering adaptive evolution, has not been scrutinized. New complete specimens of the hexactinellid sponge Sanshapentella tentoriformis sp. nov. from the Qingjiang biota (black shale of the Cambrian Stage 3 Shuijingtuo Formation, ca 518 Ma) allow recognition of a unique dendriform body characterized by a columnar trunk with multiple conical high peaks and distinctive quadripod-shaped dermal spicules that frame each high peak. The body shape of this new sponge along with other early Cambrian hexactinellids, is classified into three morpho-groups that reflect different levels of adaptivity to the environment. The cylindrical and ovoid bodies generally adapted to a large spectrum of environments; however, the dendriform body of S. tentoriformis was restricted to the relatively deep-water, oxygen-deficient environment. From a hindsight view, the unique body shape represents a consequence of adaptation that helps maintain an effective use of oxygen and a low energy cost in hypoxic conditions.


Asunto(s)
Evolución Biológica , Gránulos de Ribonucleoproteína de Células Germinales , Biota , Fósiles , Minerales , Oxígeno
2.
Mol Phylogenet Evol ; 78: 386-98, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24792086

RESUMEN

The phylum Ascomycota is by far the largest group in the fungal kingdom. Ecologically important mutualistic associations such as mycorrhizae and lichens have evolved in this group, which are regarded as key innovations that supported the evolution of land plants. Only a few attempts have been made to date the origin of Ascomycota lineages by using molecular clock methods, which is primarily due to the lack of satisfactory fossil calibration data. For this reason we have evaluated all of the oldest available ascomycete fossils from amber (Albian to Miocene) and chert (Devonian and Maastrichtian). The fossils represent five major ascomycete classes (Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Laboulbeniomycetes, and Lecanoromycetes). We have assembled a multi-gene data set (18SrDNA, 28SrDNA, RPB1 and RPB2) from a total of 145 taxa representing most groups of the Ascomycota and utilized fossil calibration points solely from within the ascomycetes to estimate divergence times of Ascomycota lineages with a Bayesian approach. Our results suggest an initial diversification of the Pezizomycotina in the Ordovician, followed by repeated splits of lineages throughout the Phanerozoic, and indicate that this continuous diversification was unaffected by mass extinctions. We suggest that the ecological diversity within each lineage ensured that at least some taxa of each group were able to survive global crises and rapidly recovered.


Asunto(s)
Ascomicetos/clasificación , Fósiles , Ascomicetos/citología , Ascomicetos/genética , Teorema de Bayes , Evolución Biológica , Filogenia , Análisis de Secuencia de ADN
3.
Naturwissenschaften ; 101(6): 467-77, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24763744

RESUMEN

Fossil record of Phanerozoic non-spicular sponges, beside of being important with respect to the lineage evolution per se, could provide valuable references for the investigation of Precambrian ancestral animal fossils. However, although modern phylogenomic studies resolve non-spicular demosponges as the sister group of the remaining spiculate demosponges, the fossil record of the former is extremely sparse or unexplored compared to that of the latter; the Middle Cambrian Vauxiidae Walcott 1920, is the only confirmed fossil taxon of non-spicular demosponges. Here, we describe carbonate materials from Devonian (Upper Givetian to Lower Frasnian) bioherms of northern France and Triassic (Anisian) microbialites of Poland that most likely represent fossil remnants of keratose demosponges. These putative fossils of keratose demosponges are preserved as automicritic clumps. They are morphologically distinguishable from microbial fabrics but similar to other spiculate sponge fossils, except that the skeletal elements consist of fibrous networks instead of assembled spicules. Consistent with the immunological behavior of sponges, these fibrous skeletons often form a rim at the edge of the automicritic aggregate, separating the inner part of the aggregate from foreign objects. To confirm the architecture of these fibrous networks, two fossil specimens and a modern thorectid sponge for comparison were processed for three-dimensional (3-D) reconstruction using serial grinding tomography. The resulting fossil reconstructions are three-dimensionally anastomosing, like modern keratose demosponges, but their irregular and nonhierarchical meshes indicate a likely verongid affinity, although a precise taxonomic conclusion cannot be made based on the skeletal architecture alone. This study is a preliminary effort, but an important start to identify fossil non-spicular demosponges in carbonates and to re-evaluate their fossilization potential.


Asunto(s)
Fósiles , Imagenología Tridimensional , Poríferos/anatomía & histología , Animales , Francia , Polonia , Tomografía
4.
Geobiology ; 22(1): e12582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385600

RESUMEN

We challenge the prevailing view that the end-Permian extinction impeded the Triassic evolution of sponges. Here, we report a deep-water community dominated by abundant keratose sponges in the lowest Triassic strata from Southwest China. The sponge fossils occur as dark elliptical imprints in mudstone with distinct oscula on their tops. The structure of preserved fibers suggests closest affinity with the extant Dictyoceratida, an aspiculate demosponge. The exceptional preservation plays a crucial role in retaining their exquisite structures. Sedimentary, taphonomic, pyrite framboid, and trace elemental analyses indicate that the sponges proliferated in an oxygen-poor habitat, demonstrating the high tolerance of sponges to severe conditions. Sponge proliferation is a signal of environmental upheaval but they also stabilized the ecosystem, driving the first phase of biotic recovery after the end-Permian extinction.


Asunto(s)
Queratosis , Oligoelementos , Humanos , Ecosistema , Fósiles , China , Biodiversidad
5.
Archaea ; 2013: 102972, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23843725

RESUMEN

The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Hierro/metabolismo , Metano/metabolismo , Agua de Mar/microbiología , Anaerobiosis , Mar Negro , Carbonato de Calcio/metabolismo , Hierro/química , Consorcios Microbianos , Oxidación-Reducción , Sulfatos/metabolismo , Sulfuros/metabolismo , Bacterias Reductoras del Azufre/metabolismo
6.
Mol Phylogenet Evol ; 65(2): 582-94, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22842092

RESUMEN

Diplasiolejeunea is a pantropical, epiphytic genus of leafy liverworts that occurs from the lowlands to more than 4000m altitude. Phylogenetic analyses of a molecular dataset consisting of three markers (nuclear ribosomal ITS region, plastidic trnL-F region and rbcL gene) and 122 accessions (plus two outgroups, Colura and Cololejeunea) indicate that the evolutionary diversity of Diplasiolejeunea is underestimated by current morphology-based classification. Four morphologically semi-cryptic species have been recovered. The molecular phylogenies support a deep split into a Neotropical and a Paleotropical clade, the latter structured into Australasian, Asian and Afromadacascan lineages. Presented results confirm the ranges of two pantropical species (D. cavifolia, D. rudolphiana), provide evidence for dispersal from the Neotropics into the Paleotropics, indicate speciation along altitudinal gradients and demonstrate extensive morphological homoplasy. We propose a revised supraspecific classification of Diplasiolejeunea into a predominantly Paleotropical subgenus Physolejeunea and predominantly Neotropical subgenera Austrolejeuneopsis and Diplasiolejeunea, the former containing mainly epiphytic species, the latter mainly epiphylls. Several clades are supported by combinations of morphological character states, and could be assigned to sections at some later point. This is the first comprehensive phylogeny of a largely epiphyllous genus of liverworts.


Asunto(s)
Evolución Molecular , Especiación Genética , Hepatophyta/clasificación , Filogenia , Núcleo Celular/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Hepatophyta/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
Life (Basel) ; 12(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36143387

RESUMEN

Structures similar to fossilized nonspicular demosponges have been reported in carbonates throughout the Phanerozoic and recently in rocks dating back to 890 Ma ago. Interpretation of these records is increasingly influential to our understanding of metazoans in multiple aspects, including their early evolution, the ecology in fossil reefs, and recovery after mass extinction events. Here, we propose six identification criteria of "Keratosa"-type nonspicular demosponge fossils based on the well-established taphonomical models and their biological characteristics. Besides, sponge fossils of this kind from the lowermost Triassic of Chanakhchi (Armenia) are described with a 3-D reconstruction to exemplify the application of these criteria in recognition of such organisms. Subsequently, the state-of-the-art understanding of the taxonomy and evolution of these fossil sponges, a previously poorly addressed topic, is summarized. The morphology of the Triassic Chanakhchi fossils indicates an affinity with verongimorphs, a group that may have evolved by Cambrian Age 3. Other than that, further efforts are encouraged to forge quantitative criteria based on the here proposed descriptive version and to explore the taxonomic diversity and evolutionary details of these fossil nonspicular demosponges.

8.
BMC Evol Biol ; 11: 238, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21838889

RESUMEN

BACKGROUND: The synchronous and widespread adoption of the ability to biomineralize was a defining event for metazoan evolution during the late Precambrian/early Cambrian 545 million years ago. However our understanding on the molecular level of how animals first evolved this capacity is poor. Because sponges are the earliest branching phylum of biomineralizing metazoans, we have been studying how biocalcification occurs in the coralline demosponge Astrosclera willeyana. RESULTS: We have isolated and characterized a novel protein directly from the calcified spherulites of A. willeyana. Using three independent lines of evidence (genomic architecture of the gene in A. willeyana, spatial expression of the gene product in A. willeyana and genomic architecture of the gene in the related demosponge Amphimedon queenslandica), we show that the gene that encodes this protein was horizontally acquired from a bacterium, and is now highly and exclusively expressed in spherulite forming cells. CONCLUSIONS: Our findings highlight the ancient and close association that exists between sponges and bacteria, and provide support for the notion that horizontal gene transfer may have been an important mechanism that supported the evolution of this early metazoan biomineralisation strategy.


Asunto(s)
Bacterias/genética , Evolución Biológica , Transferencia de Gen Horizontal , Poríferos/fisiología , Secuencia de Aminoácidos , Animales , Bacterias/metabolismo , Secuencia de Bases , Calcificación Fisiológica , Minerales/metabolismo , Datos de Secuencia Molecular , Filogenia , Poríferos/genética , Proteínas/genética , Proteínas/metabolismo
9.
New Phytol ; 192(4): 988-996, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22074339

RESUMEN

The development of mycorrhizal associations is considered a key innovation that enabled vascular plants to extensively colonize terrestrial habitats. Here, we present the first known fossil ectomycorrhizas from an angiosperm forest. Our fossils are preserved in a 52 million-yr-old piece of amber from the Tadkeshwar Lignite Mine of Gujarat State, western India. The amber was produced by representatives of Dipterocarpaceae in an early tropical broadleaf forest. The ectomycorrhizas were investigated using light microscopy and field emission scanning electron microscopy. Dissolving the amber surrounding one of the fossils allowed ultrastructural analyses and Raman spectroscopy. Approx. 20 unramified, cruciform and monopodial-pinnate ectomycorrhizas are fossilized adjacent to rootlets, and different developmental stages of the fossil mycorrhizas are delicately preserved in the ancient resin. Compounds of melanins were detectable in the dark hyphae. The mycobiont, Eomelanomyces cenococcoides gen. et spec. nov., is considered to be an ascomycete; the host is most likely a dipterocarp representative. An early ectomycorrhizal association may have conferred an evolutionary advantage on dipterocarps. Our find indicates that ectomycorrhizas occurred contemporaneously within both gymnosperms (Pinaceae) and angiosperms (Dipterocarpaceae) by the Lower Eocene.


Asunto(s)
Magnoliopsida/microbiología , Micorrizas/fisiología , Árboles/microbiología , Fósiles , Micelio/citología , Micorrizas/clasificación , Micorrizas/citología , Micorrizas/ultraestructura , Espectrometría Raman , Factores de Tiempo
10.
Nat Commun ; 12(1): 1101, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597520

RESUMEN

It is widely hypothesised that primeval life utilised small organic molecules as sources of carbon and energy. However, the presence of such primordial ingredients in early Earth habitats has not yet been demonstrated. Here we report the existence of indigenous organic molecules and gases in primary fluid inclusions in c. 3.5-billion-year-old barites (Dresser Formation, Pilbara Craton, Western Australia). The compounds identified (e.g., H2S, COS, CS2, CH4, acetic acid, organic (poly-)sulfanes, thiols) may have formed important substrates for purported ancestral sulfur and methanogenic metabolisms. They also include stable building blocks of methyl thioacetate (methanethiol, acetic acid) - a putative key agent in primordial energy metabolism and thus the emergence of life. Delivered by hydrothermal fluids, some of these compounds may have fuelled microbial communities associated with the barite deposits. Our findings demonstrate that early Archaean hydrothermal fluids contained essential primordial ingredients that provided fertile substrates for earliest life on our planet.


Asunto(s)
Archaea/química , Sulfuro de Hidrógeno/análisis , Metano/análisis , Compuestos de Sulfhidrilo/análisis , Sulfato de Bario/análisis , Planeta Tierra , Ecosistema , Microbiología Ambiental , Evolución Química , Cromatografía de Gases y Espectrometría de Masas , Geografía , Sedimentos Geológicos/química , Factores de Tiempo , Australia Occidental
11.
Microorganisms ; 9(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383678

RESUMEN

(1) Background: Microbial communities in terrestrial, calcifying high-alkaline springs are not well understood. In this study, we investigate the structure and composition of microbial mats in ultrabasic (pH 10-12) serpentinite springs of the Voltri Massif (Italy). (2) Methods: Along with analysis of chemical and mineralogical parameters, environmental DNA was extracted and subjected to analysis of microbial communities based upon next-generation sequencing. (3) Results: Mineral precipitation and microbialite formation occurred, along with mat formation. Analysis of the serpentinite spring microbial community, based on Illumina sequencing of 16S rRNA amplicons, point to the relevance of alkaliphilic cyanobacteria, colonizing carbonate buildups. Cyanobacterial groups accounted for up to 45% of all retrieved sequences; 3-4 taxa were dominant, belonging to the filamentous groups of Leptolyngbyaceae, Oscillatoriales, and Pseudanabaenaceae. The cyanobacterial community found at these sites is clearly distinct from creek water sediment, highlighting their specific adaptation to these environments.

12.
Microbiol Resour Announc ; 9(40)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004448

RESUMEN

We sequenced the metagenome of an anoxygenic photosynthetic consortium originating from pond water and reconstructed four metagenome-assembled genomes. These genomes include Desulfocapsa, Paludibacter, Lamprocystis, and Rhodocyclaceae representatives and indicate the presence of genes for dissimilatory sulfate reduction and oxidation of reduced sulfur compounds.

13.
Microorganisms ; 8(3)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150959

RESUMEN

Siboglinids were sampled from four mud volcanoes in the Gulf of Cádiz (El Cid MV, Bonjardim MV, Al Gacel MV, and Anastasya MV). These invertebrates are characteristic to cold seeps and are known to host chemosynthetic endosymbionts in a dedicated trophosome organ. However, little is known about their tube as a potential niche for other microorganisms. Analyses by scanning and transmission electron microscopy showed dense biofilms on the tube in Al Gacel MV and Anastasya MV specimens by prokaryotic cells. Methanotrophic bacteria were the most abundant forming these biofilms as further supported by 16S rRNA sequence analysis. Furthermore, elemental analyses with electron microscopy and energy-dispersive X-ray spectroscopy point to the mineralization and silicification of the tube, most likely induced by the microbial metabolisms. Bacterial and archaeal 16S rRNA sequence libraries revealed abundant microorganisms related to these siboglinid specimens and certain variations in microbial communities among samples. Thus, the tube remarkably increases the microbial biomass related to the worms and provides an additional microbial niche in deep-sea ecosystems.

14.
Sci Rep ; 9(1): 20394, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31892704

RESUMEN

Organic-rich laminated shales and limestones from the Monte San Giorgio (Lugano Prealps, Switzerland) are known as famous fossil lagerstätten for excellently preserved fossils from the Middle Triassic Period. The various bituminous shales from Monte San Giorgio are thermally immature and rich in diverse organic compounds, which provide unique substrates for active soil microbial communities. We selected the Cava superior beds of the Acqua del Ghiffo site for this study. To investigate its microbial structure and diversity, contig assembly, Operational Taxonomic Units (OTUs) clustering, and rarefaction analysis were performed for bacterial 16S rDNA preparations from bituminous and non-bituminous limestone strata with the MetaAmp pipeline. Principal coordinates analysis shows that the microbial communities from the bituminous strata differ significantly from limestone samples (P < 0.05 Unifrac weighted). Moreover, metagenomic tools could also be used effectively to analyze the microbial communities shift during enrichment in specific growth media. In the nutrient-rich media, one or few taxa, mainly Proteobacteria and Firmicutes, were enriched which led to the drastic diversity loss while oligotrophic media could enrich many taxa simultaneously and sustain the richness and diversity of the inoculum. Piphillin, METAGENassist and MicrobiomeAnalyst pipeline also predicted that the Monte San Giorgio bituminous shales and oligotrophic enriched microbiomes degrade complex polycyclic aromatic hydrocarbons.


Asunto(s)
ADN Bacteriano/genética , Firmicutes/genética , Fósiles , Microbiota , Proteobacteria/genética , Microbiología del Suelo , Suiza
16.
J Microbiol Methods ; 73(2): 85-91, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18405985

RESUMEN

In several fields of cell biology, correlative microscopy is applied to compare the structure of objects at high resolution under the electron microscope with low resolution light microscopy images of the same sample. It is, however, difficult to prepare samples and marker systems that are applicable for both microscopic techniques for the same specimen at the same time. In our studies, we used microbial mats from Cold Seep communities for a simple and rapid correlative microscopy method. The mats consist of bacterial and archaeal microorganisms, coupling reverse methanogenesis to the reduction of sulfate. The reverse methanogenic pathway also generates carbonates that precipitate inside the mat and may be the main reason for the formation of a microbial reef. The mat shows highly differentiated aggregates of various organisms, tightly interconnected by extracellular polysaccharides. In order to investigate the role of EPS as adhesive mucilage for the biofilm and as a precipitation matrix for carbonate minerals, samples were embedded in a hydrophilic resin (Lowicryl K4 M). Sections were suitable for light as well as electron microscopy in combination with lectins, either labeled with a fluorescent marker or with colloidal gold. This allows lectin mapping at low resolution for light microscopy in direct comparison with a highly resolved electron microscopic image.


Asunto(s)
Archaea/ultraestructura , Bacterias/ultraestructura , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Archaea/metabolismo , Bacterias/metabolismo , Carbonatos/metabolismo , Frío , Colorantes Fluorescentes , Oro Coloide , Lectinas/metabolismo , Metano/biosíntesis , Microscopía , Microscopía Electrónica , Microtomía , Oxidación-Reducción , Adhesión en Plástico , Polisacáridos/metabolismo , Polisacáridos Bacterianos/metabolismo , Coloración y Etiquetado/métodos , Sulfatos/metabolismo
17.
PLoS One ; 12(5): e0177542, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542238

RESUMEN

Stromatolitic iron-rich structures have been reported from many ancient environments and are often described as Frutexites, a cryptic microfossil. Although microbial formation of such structures is likely, a clear relation to a microbial precursor is lacking so far. Here we report recent iron oxidizing biofilms which resemble the ancient Frutexites structures. The living Frutexites-like biofilms were sampled at 160 m depth in the Äspö Hard Rock Laboratory in Sweden. Investigations using microscopy, 454 pyrosequencing, FISH, Raman spectroscopy, biomarker and trace element analysis allowed a detailed view of the structural components of the mineralized biofilm. The most abundant bacterial groups were involved in nitrogen and iron cycling. Furthermore, Archaea are widely distributed in the Frutexites-like biofilm, even though their functional role remains unclear. Biomarker analysis revealed abundant sterols in the biofilm most likely from algal and fungal origins. Our results indicate that the Frutexites-like biofilm was built up by a complex microbial community. The functional role of each community member in the formation of the dendritic structures, as well as their potential relation to fossil Frutexites remains under investigation.


Asunto(s)
Biopelículas , Hierro/metabolismo , Microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Lípidos/análisis , Minerales/metabolismo , Análisis de Secuencia de ADN , Propiedades de Superficie , Suecia , Oligoelementos/análisis
18.
Mar Biotechnol (NY) ; 8(4): 373-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16758369

RESUMEN

To determine the stability and specificity of microbes associated with the marine cold-water sponge Geodia barretti during cultivation, we compared the microbial community of freshly retrieved specimens to that of cultivated explants by fluorescence in situ hybridization (FISH). G. barretti hosts a specific homogeneous microbial community in its mesohyl, which is maintained during a cultivation period of 8 months. In 10-day-old explants, bright colonies of unusually large bacterial cells, located predominantly at canal walls, were observed in addition to the common bacteria. Bacteria of the aberrant type included both lineages present in whole sponges and foreign ones, notably numerous genera of sulfate-reducing bacteria. We assume that these represent infectious bacteria that eluded the innate immune system of the sponge. Explants that resist these microbial attacks during the critical phase of cultivation eliminate infectious bacteria. The intrinsic microbial community of G. barretti is not affected by these infections and remains persistent over a cultivation period of at least several months.


Asunto(s)
Monitoreo del Ambiente/métodos , Geodia/microbiología , Agua de Mar/microbiología , Animales , Acuicultura/métodos , Archaea/clasificación , Biodiversidad , Clima Frío , Cartilla de ADN/química , Hibridación Fluorescente in Situ/métodos , Proteobacteria/clasificación
19.
PLoS One ; 11(1): e0147629, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26807732

RESUMEN

Paleoarchean rocks from the Pilbara Craton of Western Australia provide a variety of clues to the existence of early life on Earth, such as stromatolites, putative microfossils and geochemical signatures of microbial activity. However, some of these features have also been explained by non-biological processes. Further lines of evidence are therefore required to convincingly argue for the presence of microbial life. Here we describe a new type of microbial mat facies from the 3.4 Ga Strelley Pool Formation, which directly overlies well known stromatolitic carbonates from the same formation. This microbial mat facies consists of laminated, very fine-grained black cherts with discontinuous white quartz layers and lenses, and contains small domical stromatolites and wind-blown crescentic ripples. Light- and cathodoluminescence microscopy, Raman spectroscopy, and time of flight-secondary ion mass spectrometry (ToF-SIMS) reveal a spatial association of carbonates, organic material, and highly abundant framboidal pyrite within the black cherts. Nano secondary ion mass spectrometry (NanoSIMS) confirmed the presence of distinct spheroidal carbonate bodies up to several tens of µm that are surrounded by organic material and pyrite. These aggregates are interpreted as biogenic. Comparison with Phanerozoic analogues indicates that the facies represents microbial mats formed in a shallow marine environment. Carbonate precipitation and silicification by hydrothermal fluids occurred during sedimentation and earliest diagenesis. The deciphered environment, as well as the δ13C signature of bulk organic matter (-35.3‰), are in accord with the presence of photoautotrophs. At the same time, highly abundant framboidal pyrite exhibits a sulfur isotopic signature (δ34S = +3.05‰; Δ33S = 0.268‰; and Δ36S = -0.282‰) that is consistent with microbial sulfate reduction. Taken together, our results strongly support a microbial mat origin of the black chert facies, thus providing another line of evidence for life in the 3.4 Ga Strelley Pool Formation.


Asunto(s)
Carbonatos/análisis , Fósiles , Sedimentos Geológicos/química , Isótopos de Azufre/análisis , Paleontología , Australia Occidental
20.
Sci Rep ; 5: 16060, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26538179

RESUMEN

There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.


Asunto(s)
Poríferos/metabolismo , Poríferos/fisiología , Agua/metabolismo , Animales , Biodiversidad , Biota/fisiología , China , Ecosistema , Extinción Biológica , Fósiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA