Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(5): 1039-1049.e17, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764293

RESUMEN

Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function. Binding of GroES (Hsp10 cofactor) to GroEL induces CnoX release. Cryoelectron microscopy provided crucial structural information on the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site via a highly conserved C-terminal α-helix. Furthermore, we identified complexes in which CnoX, bound to GroEL, forms mixed disulfides with GroEL substrates, indicating that CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural features with CnoX exist in eukaryotes, suggesting that Hsp60 molecular plugins have been conserved through evolution.


Asunto(s)
Chaperonas Moleculares , Pliegue de Proteína , Microscopía por Crioelectrón , Chaperonas Moleculares/metabolismo , Oxidación-Reducción , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonina 60/química , Chaperonina 10/metabolismo
2.
Nature ; 626(7999): 617-625, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081298

RESUMEN

The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane ß-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic ß-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate ß-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Membrana Celular , Bacterias Gramnegativas , Membrana Dobles de Lípidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Glicina/metabolismo , Lipopolisacáridos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Fosfolípidos/metabolismo , Sitios de Unión , Proteostasis , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteoma/química , Proteoma/metabolismo , Regulón , Dominios Proteicos , Péptidos Antimicrobianos/metabolismo , Bacterias Gramnegativas/química , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo
3.
EMBO J ; 40(17): e106887, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031903

RESUMEN

Bacillus cereus sensu lato is a group of Gram-positive endospore-forming bacteria with high ecological diversity. Their endospores are decorated with micrometer-long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075-95 and find proteinaceous fibers of two main morphologies: S- and L-Ena. By using cryoEM and 3D helical reconstruction of S-Enas, we show these to represent a novel class of Gram-positive pili. S-Enas consist of single domain subunits with jellyroll topology that are laterally stacked by ß-sheet augmentation. S-Enas are longitudinally stabilized by disulfide bonding through N-terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena-gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.


Asunto(s)
Bacillus cereus/ultraestructura , Proteínas Bacterianas/química , Fimbrias Bacterianas/ultraestructura , Bacillus cereus/genética , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Fimbrias Bacterianas/química , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Estabilidad Proteica
4.
Environ Microbiol ; 26(9): e16678, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39228067

RESUMEN

Species within the Bacillus cereus sensu lato group, known for their spore-forming ability, are recognized for their significant role in food spoilage and food poisoning. The spores of B. cereus are adorned with numerous pilus-like appendages, referred to as S-ENAs and L-ENAs. These appendages are thought to play vital roles in self-aggregation, adhesion, and biofilm formation. Our study investigates the role of S-ENAs and L-ENAs, as well as the impact of various environmental factors on spore-to-spore contacts and the interaction between spores and vegetative cells, using both bulk and single-cell approaches. Our findings indicate that ENAs, especially their tip fibrillae, play a crucial role in spore self-aggregation, but not in the adhesion of spores to vegetative cells. The absence of L-BclA, which forms the L-ENA tip fibrillum, reduced spore aggregation mediated by both S-ENAs and L-ENAs, highlighting the interconnected roles of S-ENAs and L-ENAs. We also found that increased salt concentrations in the liquid environment significantly reduced spore aggregation, suggesting a charge dependency of spore-spore interactions. By shedding light on these complex interactions, our study offers valuable insights into spore dynamics. This knowledge can inform future studies on spore behaviour in environmental settings and assist in developing strategies to manage bacterial aggregation for beneficial purposes, such as controlling biofilms in food production equipment.


Asunto(s)
Bacillus cereus , Esporas Bacterianas , Bacillus cereus/fisiología , Esporas Bacterianas/fisiología , Esporas Bacterianas/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
5.
Nat Methods ; 18(1): 60-68, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408403

RESUMEN

Nanobodies are popular and versatile tools for structural biology. They have a compact single immunoglobulin domain organization, bind target proteins with high affinities while reducing their conformational heterogeneity and stabilize multi-protein complexes. Here we demonstrate that engineered nanobodies can also help overcome two major obstacles that limit the resolution of single-particle cryo-electron microscopy reconstructions: particle size and preferential orientation at the water-air interfaces. We have developed and characterized constructs, termed megabodies, by grafting nanobodies onto selected protein scaffolds to increase their molecular weight while retaining the full antigen-binding specificity and affinity. We show that the megabody design principles are applicable to different scaffold proteins and recognition domains of compatible geometries and are amenable for efficient selection from yeast display libraries. Moreover, we demonstrate that megabodies can be used to obtain three-dimensional reconstructions for membrane proteins that suffer from severe preferential orientation or are otherwise too small to allow accurate particle alignment.


Asunto(s)
Microscopía por Crioelectrón/métodos , Lípidos/química , Complejos Multiproteicos/química , Receptores de GABA-A/química , Imagen Individual de Molécula/métodos , Análisis de la Célula Individual/métodos , Anticuerpos de Dominio Único/química , Humanos , Modelos Moleculares , Estructura Molecular , Conformación Proteica
6.
Cell ; 133(4): 640-52, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485872

RESUMEN

Gram-negative pathogens commonly exhibit adhesive pili on their surfaces that mediate specific attachment to the host. A major class of pili is assembled via the chaperone/usher pathway. Here, the structural basis for pilus fiber assembly and secretion performed by the outer membrane assembly platform--the usher--is revealed by the crystal structure of the translocation domain of the P pilus usher PapC and single particle cryo-electron microscopy imaging of the FimD usher bound to a translocating type 1 pilus assembly intermediate. These structures provide molecular snapshots of a twinned-pore translocation machinery in action. Unexpectedly, only one pore is used for secretion, while both usher protomers are used for chaperone-subunit complex recruitment. The translocating pore itself comprises 24 beta strands and is occluded by a folded plug domain, likely gated by a conformationally constrained beta-hairpin. These structures capture the secretion of a virulence factor across the outer membrane of gram-negative bacteria.


Asunto(s)
Vías Biosintéticas , Escherichia coli/química , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/ultraestructura , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Proteínas Fimbrias/química , Proteínas Fimbrias/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Porinas/química , Porinas/metabolismo
7.
Nature ; 546(7659): 528-532, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28614296

RESUMEN

Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) affect 150 million people annually. Despite effective antibiotic therapy, 30-50% of patients experience recurrent UTIs. In addition, the growing prevalence of UPEC that are resistant to last-line antibiotic treatments, and more recently to carbapenems and colistin, make UTI a prime example of the antibiotic-resistance crisis and emphasize the need for new approaches to treat and prevent bacterial infections. UPEC strains establish reservoirs in the gut from which they are shed in the faeces, and can colonize the periurethral area or vagina and subsequently ascend through the urethra to the urinary tract, where they cause UTIs. UPEC isolates encode up to 16 distinct chaperone-usher pathway pili, and each pilus type may enable colonization of a habitat in the host or environment. For example, the type 1 pilus adhesin FimH binds mannose on the bladder surface, and mediates colonization of the bladder. However, little is known about the mechanisms underlying UPEC persistence in the gut. Here, using a mouse model, we show that F17-like and type 1 pili promote intestinal colonization and show distinct binding to epithelial cells distributed along colonic crypts. Phylogenomic and structural analyses reveal that F17-like pili are closely related to pilus types carried by intestinal pathogens, but are restricted to extra-intestinal pathogenic E. coli. Moreover, we show that targeting FimH with M4284, a high-affinity inhibitory mannoside, reduces intestinal colonization of genetically diverse UPEC isolates, while simultaneously treating UTI, without notably disrupting the structural configuration of the gut microbiota. By selectively depleting intestinal UPEC reservoirs, mannosides could markedly reduce the rate of UTIs and recurrent UTIs.


Asunto(s)
Proteínas Fimbrias/antagonistas & inhibidores , Intestinos/efectos de los fármacos , Intestinos/microbiología , Manósidos/farmacología , Ácidos Ftálicos/farmacología , Infecciones Urinarias/prevención & control , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/aislamiento & purificación , Adhesinas de Escherichia coli/metabolismo , Secuencia de Aminoácidos , Animales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Heces/microbiología , Femenino , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/clasificación , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Intestinos/citología , Manósidos/uso terapéutico , Ratones , Modelos Moleculares , Ácidos Ftálicos/uso terapéutico , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/genética
8.
EMBO J ; 37(13)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29858229

RESUMEN

The human gastric pathogen Helicobacter pylori is a major causative agent of gastritis, peptic ulcer disease, and gastric cancer. As part of its adhesive lifestyle, the bacterium targets members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family by the conserved outer membrane adhesin HopQ. The HopQ-CEACAM1 interaction is associated with inflammatory responses and enables the intracellular delivery and phosphorylation of the CagA oncoprotein via a yet unknown mechanism. Here, we generated crystal structures of HopQ isotypes I and II bound to the N-terminal domain of human CEACAM1 (C1ND) and elucidated the structural basis of H. pylori specificity toward human CEACAM receptors. Both HopQ alleles target the ß-strands G, F, and C of C1ND, which form the trans dimerization interface in homo- and heterophilic CEACAM interactions. Using SAXS, we show that the HopQ ectodomain is sufficient to induce C1ND monomerization and thus providing H. pylori a route to influence CEACAM-mediated cell adherence and signaling events.


Asunto(s)
Antígenos CD/fisiología , Proteínas Bacterianas/fisiología , Moléculas de Adhesión Celular/fisiología , Helicobacter pylori/fisiología , Animales , Antígenos CD/química , Proteínas Bacterianas/química , Células CHO , Moléculas de Adhesión Celular/química , Línea Celular Tumoral , Cricetulus , Humanos , Multimerización de Proteína
9.
Nat Chem Biol ; 16(9): 1019-1025, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32572278

RESUMEN

The ß-barrel assembly machinery (BAM) inserts outer membrane ß-barrel proteins (OMPs) in the outer membrane of Gram-negative bacteria. In Enterobacteriacea, BAM also mediates export of the stress sensor lipoprotein RcsF to the cell surface by assembling RcsF-OMP complexes. Here, we report the crystal structure of the key BAM component BamA in complex with RcsF. BamA adopts an inward-open conformation, with the lateral gate to the membrane closed. RcsF is lodged deep within the lumen of the BamA barrel, binding regions proposed to undergo outward and lateral opening during OMP insertion. On the basis of our structural and biochemical data, we propose a push-and-pull model for RcsF export following conformational cycling of BamA, and provide a mechanistic explanation for how RcsF uses its interaction with BamA to detect envelope stress. Our data also suggest that the flux of incoming OMP substrates is involved in the control of BAM activity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Conformación Proteica
10.
Nature ; 516(7530): 250-3, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25219853

RESUMEN

Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the α and γ classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded ß-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 Å(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism.


Asunto(s)
Amiloide/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Biopelículas , Membrana Celular , Cristalografía por Rayos X , Difusión , Entropía , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Periplasma/metabolismo , Conformación Proteica , Transporte de Proteínas
11.
Subcell Biochem ; 92: 369-413, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214993

RESUMEN

To interact with the external environments, bacteria often display long proteinaceous appendages on their cell surface, called pili or fimbriae. These non-flagellar thread-like structures are polymers composed of covalently or non-covalently interacting repeated pilin subunits. Distinct pilus classes can be identified on basis of their assembly pathways, including chaperone-usher pili, type V pili, type IV pili, curli and fap fibers, conjugative and type IV secretion pili, as well as sortase-mediated pili. Pili play versatile roles in bacterial physiology, and can be involved in adhesion and host cell invasion, DNA and protein secretion and uptake, biofilm formation, cell motility and more. Recent advances in structure determination of components involved in the various pilus systems has enabled a better molecular understanding of their mechanisms of assembly and function. In this chapter we describe the diversity in structure, biogenesis and function of the different pilus systems found in Gram-positive and Gram-negative bacteria, and review their potential as anti-microbial targets.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Antibacterianos/farmacología , Proteínas Fimbrias/biosíntesis , Proteínas Fimbrias/química , Fimbrias Bacterianas/efectos de los fármacos , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo
12.
Molecules ; 25(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961972

RESUMEN

The syntheses of six thiol-exhibiting monosaccharides towards suicide inhibition of Helicobacter pylori are reported. Blood group Antigen Binding Adhesin (BabA), a bacterial membrane-bound lectin, binds to human ABO and Lewis b blood group structures displayed on the surface of host epithelial cells. Crystal structures of the carbohydrate-recognition domain revealed a conserved disulfide bonded loop that anchors a critical fucose residue in these blood group structures. Disruption of this loop by N-acetylcysteine results in reduced BabA-mediated adherence to human gastric tissue sections and attenuated virulence in Lewis b-expressing transgenic mice. With a view of creating specific inhibitors of the lectin, we designed and successfully synthesised six fucose-derived compounds with thiol motifs to engage in a thiol-disulfide exchange with this disulfide bond of BabA and form a glycan-lectin disulfide linkage. Branching and extending the fucose backbone with 2- and 3-carbon thiol motifs delivered a range of candidates to be tested for biological activity against BabA.


Asunto(s)
Antibacterianos/síntesis química , Fucosa/química , Helicobacter pylori/fisiología , Compuestos de Sulfhidrilo/química , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Fucosa/metabolismo , Fucosa/farmacología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Helicobacter pylori/efectos de los fármacos , Humanos , Lectinas/química , Lectinas/metabolismo , Antígenos del Grupo Sanguíneo de Lewis/genética , Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Ratones , Ratones Transgénicos
13.
Mol Microbiol ; 110(1): 33-46, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29995350

RESUMEN

The human stomach pathogen Helicobacter pyloriattaches to healthy and inflamed gastric tissue through members of a paralogous family of 'Helicobacter outer membrane proteins' (Hops), including adhesins BabA, SabA, HopQ, LabA and HopZ. Hops share a conserved 25 kDa C-terminal region that is thought to form an autotransporter-like transmembrane domain. Instead, our results show that Hops contain a non-continuous transmembrane domain, composed of seven predicted ß-strands at the C-terminus and one at the N-terminus. Folding and outer membrane localization of the C-terminal ß-domain critically depends on a predicted transmembrane ß-strand within the first 16 N-terminal residues. The N-terminus is shown to reside in the periplasm, and our crystal and small angle X-ray scattering structures for the SabA extracellular domain reveal a conserved coiled-coil stem domain that connects to transmembrane ß-strand 1 and 2. Taken together, our data show that Hop adhesins represent a novel outer membrane protein topology encompassing an OmpA-like 8-stranded ß-barrel that is interrupted by a 15-108 kDa domain inserted inside the first extracellular loop. The insertion of large, folded domains in an extracellular loop is unprecedented in bacterial outer membrane proteins and is expected to have important consequences on how these proteins reach the cell surface.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Helicobacter pylori/fisiología , Sistemas de Secreción Tipo V/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Simulación por Computador , Helicobacter pylori/genética , Filogenia , Conformación Proteica en Lámina beta/genética , Dominios Proteicos/genética , Transporte de Proteínas/fisiología , Dispersión del Ángulo Pequeño , Análisis de Secuencia de Proteína , Eliminación de Secuencia , Sistemas de Secreción Tipo V/química
14.
Nat Chem Biol ; 13(8): 902-908, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628096

RESUMEN

Curli are functional amyloids produced by proteobacteria like Escherichia coli as part of the extracellular matrix that holds cells together into biofilms. The molecular events that occur during curli nucleation and fiber extension remain largely unknown. Combining observations from curli amyloidogenesis in bulk solutions with real-time in situ nanoscopic imaging at the single-fiber level, we show that curli display polar growth, and we detect two kinetic regimes of fiber elongation. Single fibers exhibit stop-and-go dynamics characterized by bursts of steady-state growth alternated with periods of stagnation. At high subunit concentrations, fibers show constant, unperturbed burst growth. Curli follow a one-step nucleation process in which monomers contemporaneously fold and oligomerize into minimal fiber units that have growth characteristics identical to those of the mature fibrils. Kinetic data and interaction studies of curli fibrillation in the presence of the natural inhibitor CsgC show that the inhibitor binds curli fibers and predominantly acts at the level of fiber elongation.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/química , Escherichia coli/química
15.
Nature ; 487(7405): 119-22, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22722836

RESUMEN

S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a φ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca(2+) ion coordination. A Ca(2+)-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Calcio/farmacología , Geobacillus stearothermophilus/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Calcio/química , Calcio/metabolismo , Microscopía por Crioelectrón , Cristalización/métodos , Cristalografía por Rayos X , Inmunoglobulinas/química , Modelos Moleculares , Simulación de Dinámica Molecular , Nanoestructuras/química , Polimerizacion/efectos de los fármacos , Estructura Cuaternaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Soluciones
16.
EMBO J ; 32(8): 1195-204, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23511972

RESUMEN

Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1-11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane-spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O-layer inserted in the outer membrane and the I-layer inserted in the inner membrane. While the structure of the O-layer has been solved by X-ray crystallography, there is no detailed structural information on the I-layer. Using high-resolution cryo-electron microscopy and molecular modelling combined with biochemical approaches, we determined the I-layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived.


Asunto(s)
Agrobacterium tumefaciens/química , Sistemas de Secreción Bacterianos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Conformación Proteica
17.
Biochem Biophys Res Commun ; 487(2): 403-408, 2017 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28416386

RESUMEN

Inhibition of transcriptional regulators of bacterial pathogens with the aim of reprogramming their metabolism to modify their antibiotic susceptibility constitutes a promising therapeutic strategy. One example is the bio-activation of the anti-tubercular pro-drug ethionamide, which activity could be enhanced by inhibiting the transcriptional repressor EthR. Recently, we discovered that inhibition of a second transcriptional repressor, EthR2, leads to the awakening of a new ethionamide bio-activation pathway. The x-ray structure of EthR2 was solved at 2.3 Å resolution in complex with a compound called SMARt-420 (Small Molecule Aborting Resistance). Detailed comparison and structural analysis revealed interesting insights for the upcoming structure-based design of EthR2 inhibitors as an alternative to revert ethionamide resistance in Mycobacterium tuberculosis.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Isoxazoles/química , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/metabolismo , Proteínas Represoras/química , Proteínas Represoras/ultraestructura , Compuestos de Espiro/química , Sitios de Unión , Modelos Químicos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Relación Estructura-Actividad
18.
J Virol ; 90(1): 611-5, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468526

RESUMEN

We report the crystal structure of the M2 ectodomain (M2e) in complex with a monoclonal antibody that binds the amino terminus of M2. M2e extends into the antibody binding site to form an N-terminal ß-turn near the bottom of the paratope. This M2e folding differs significantly from that of M2e in complex with an antibody that binds another part of M2e. This suggests that M2e can adopt at least two conformations that can elicit protective antibodies.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Antivirales/química , Proteínas de la Matriz Viral/química , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/metabolismo , Línea Celular , Cristalografía por Rayos X , Humanos , Ratones Endogámicos BALB C , Unión Proteica , Conformación Proteica , Proteínas de la Matriz Viral/metabolismo
19.
Nature ; 474(7349): 49-53, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21637253

RESUMEN

Type 1 pili are the archetypal representative of a widespread class of adhesive multisubunit fibres in Gram-negative bacteria. During pilus assembly, subunits dock as chaperone-bound complexes to an usher, which catalyses their polymerization and mediates pilus translocation across the outer membrane. Here we report the crystal structure of the full-length FimD usher bound to the FimC-FimH chaperone-adhesin complex and that of the unbound form of the FimD translocation domain. The FimD-FimC-FimH structure shows FimH inserted inside the FimD 24-stranded ß-barrel translocation channel. FimC-FimH is held in place through interactions with the two carboxy-terminal periplasmic domains of FimD, a binding mode confirmed in solution by electron paramagnetic resonance spectroscopy. To accommodate FimH, the usher plug domain is displaced from the barrel lumen to the periplasm, concomitant with a marked conformational change in the ß-barrel. The amino-terminal domain of FimD is observed in an ideal position to catalyse incorporation of a newly recruited chaperone-subunit complex. The FimD-FimC-FimH structure provides unique insights into the pilus subunit incorporation cycle, and captures the first view of a protein transporter in the act of secreting its cognate substrate.


Asunto(s)
Adhesinas de Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Modelos Moleculares , Adhesinas de Escherichia coli/metabolismo , Cristalización , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína
20.
J Biol Chem ; 290(13): 8409-19, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25631050

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) strains are important causes of intestinal disease in humans and lead to severe production losses in animal farming. A range of fimbrial adhesins in ETEC strains determines host and tissue tropism. ETEC strains expressing F4 fimbriae are associated with neonatal and post-weaning diarrhea in piglets. Three naturally occurring variants of F4 fimbriae (F4ab, F4ac, and F4ad) exist that differ in the primary sequence of their major adhesive subunit FaeG, and each features a related yet distinct receptor binding profile. Here the x-ray structure of FaeGad bound to lactose provides the first structural insight into the receptor specificity and mode of binding by the poly-adhesive F4 fimbriae. A small D'-D″-α1-α2 subdomain grafted on the immunoglobulin-like core of FaeG hosts the carbohydrate binding site. Two short amino acid stretches Phe(150)-Glu(152) and Val(166)-Glu(170) of FaeGad bind the terminal galactose in the lactosyl unit and provide affinity and specificity to the interaction. A hemagglutination-based assay with E. coli expressing mutant F4ad fimbriae confirmed the elucidated co-complex structure. Interestingly, the crucial D'-α1 loop that borders the FaeGad binding site adopts a different conformation in the two other FaeG variants and hints at a heterogeneous binding pocket among the FaeG serotypes.


Asunto(s)
Adhesinas de Escherichia coli/química , Antígenos Bacterianos/química , Escherichia coli Enterotoxigénica/metabolismo , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Secuencia de Aminoácidos , Antígenos Bacterianos/metabolismo , Antígenos CD/química , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Galactosilceramidas/química , Lactosa/química , Lactosilceramidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA