RESUMEN
Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.
Asunto(s)
Ácidos Aristolóquicos , Albúmina Sérica Humana , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Humanos , Cristalografía por Rayos X , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Aductos de ADN/metabolismo , Aductos de ADN/química , Unión Proteica , Ácido Mirístico/metabolismo , Ácido Mirístico/químicaRESUMEN
Confining the activity of a designed protein to a specific microenvironment would have broad-ranging applications, such as enabling cell type-specific therapeutic action by enzymes while avoiding off-target effects. While many natural enzymes are synthesized as inactive zymogens that can be activated by proteolysis, it has been challenging to redesign any chosen enzyme to be similarly stimulus responsive. Here, we develop a massively parallel computational design, screening, and next-generation sequencing-based approach for proenzyme design. For a model system, we employ carboxypeptidase G2 (CPG2), a clinically approved enzyme that has applications in both the treatment of cancer and controlling drug toxicity. Detailed kinetic characterization of the most effectively designed variants shows that they are inhibited by â¼80% compared to the unmodified protein, and their activity is fully restored following incubation with site-specific proteases. Introducing disulfide bonds between the pro- and catalytic domains based on the design models increases the degree of inhibition to 98% but decreases the degree of restoration of activity by proteolysis. A selected disulfide-containing proenzyme exhibits significantly lower activity relative to the fully activated enzyme when evaluated in cell culture. Structural and thermodynamic characterization provides detailed insights into the prodomain binding and inhibition mechanisms. The described methodology is general and could enable the design of a variety of proproteins with precise spatial regulation.
Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Precursores Enzimáticos , Ingeniería de Proteínas , gamma-Glutamil Hidrolasa , Dominio Catalítico , Diseño de Fármacos/métodos , Precursores Enzimáticos/química , Precursores Enzimáticos/farmacología , Humanos , Células PC-3 , Ingeniería de Proteínas/métodos , gamma-Glutamil Hidrolasa/química , gamma-Glutamil Hidrolasa/farmacologíaRESUMEN
Heat shock factor 1 (HSF1) is a master transcription regulator that mediates the induction of heat shock protein chaperones for quality control (QC) of the proteome and maintenance of proteostasis as a protective mechanism in response to stress. Research in this particular area has accelerated dramatically over the past three decades following successful isolation, cloning, and characterization of HSF1. The intricate multi-protein complexes and transcriptional activation orchestrated by HSF1 are fundamental processes within the cellular QC machinery. Our primary focus is on the regulation and function of HSF1 in aging and neurodegenerative diseases (ND) which represent physiological and pathological states of dysfunction in protein QC. This chapter presents an overview of HSF1 structural, functional, and energetic properties in healthy cells while addressing the deterioration of HSF1 function viz-à-viz age-dependent and neuron-specific vulnerability to ND. We discuss the structural domains of HSF1 with emphasis on the intrinsically disordered regions and note that disease proteins associated with ND are often structurally disordered and exquisitely sensitive to changes in cellular environment as may occur during aging. We propose a hypothesis that age-dependent changes of the intrinsically disordered proteome likely hold answers to understand many of the functional, structural, and organizational changes of proteins and signaling pathways in aging - dysfunction of HSF1 and accumulation of disease protein aggregates in ND included.Structured AbstractsIntroduction: Heat shock factor 1 (HSF1) is a master transcription regulator that mediates the induction of heat shock protein chaperones for quality control (QC) of the proteome as a cyto-protective mechanism in response to stress. There is cumulative evidence of age-related deterioration of this QC mechanism that contributes to disease vulnerability. OBJECTIVES: Herein we discuss the regulation and function of HSF1 as they relate to the pathophysiological changes of protein quality control in aging and neurodegenerative diseases (ND). METHODS: We present an overview of HSF1 structural, functional, and energetic properties in healthy cells while addressing the deterioration of HSF1 function vis-à-vis age-dependent and neuron-specific vulnerability to neurodegenerative diseases. RESULTS: We examine the impact of intrinsically disordered regions on the function of HSF1 and note that proteins associated with neurodegeneration are natively unstructured and exquisitely sensitive to changes in cellular environment as may occur during aging. CONCLUSIONS: We put forth a hypothesis that age-dependent changes of the intrinsically disordered proteome hold answers to understanding many of the functional, structural, and organizational changes of proteins - dysfunction of HSF1 in aging and appearance of disease protein aggregates in neurodegenerative diseases included.
Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Proteoma/metabolismo , Agregado de Proteínas , Proteínas de Choque Térmico , Chaperonas Moleculares/metabolismo , Respuesta al Choque TérmicoRESUMEN
Protein-protein interactions mediate a vast number of cellular processes. Here, we present a regulatory mechanism in protein-protein interactions mediated by finely tuned structural instability and coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding, whereas correction of these defects results in less labile chaperones that give rise to nonfunctional biological systems. The protein substrates use structural mimicry to offset the weak spots in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionarily conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely tuned structural instability.
Asunto(s)
Proteínas/química , Proteínas/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Modelos Moleculares , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Imitación Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estabilidad ProteicaRESUMEN
Bistrand lesions embedded within a single helical turn of tridecameric deoxyoligonucleotide duplexes represent a model system for exploring the impact of clustered lesions that occur in vivo and pose a significant challenge to cellular repair machineries. Such investigations are essential for understanding the forces that dictate lesion-induced mutagenesis, carcinogenesis, and cytotoxicity within a context that mimics local helical perturbations caused by an ionizing radiation event. This study characterizes the structural and energy profiles of DNA duplexes harboring synthetic abasic sites (tetrahydrofuran, F) as models of clustered bistrand abasic (AP) lesions. The standard tridecameric dGCGTACCCATGCG·dCGCATGGGTACGC duplex is employed to investigate the energetic impact of single and bistrand AP sites by strategically replacing one or two bases within the central CCC/GGG triplet. Our combined analysis of temperature-dependent UV and circular dichroism (CD) profiles reveals that the proximity and relative orientation of AP sites within bistrand-damaged duplexes imparts a significant thermodynamic impact. Specifically, 3'-staggered lesions (CCF/GFG) exert a greater destabilizing effect when compared with their 5'-counterpart (FCC/GFG). Moreover, a duplex harboring the central bistrand AP lesion (CFC/GFG) is moderately destabilized yet exhibits distinct properties relative to both the 3' and 5'-orientations. Collectively, our energetic data are consistent with structural studies on bistrand AP-duplexes of similar sequence in which a 3'-staggered lesion exerts the greatest perturbation, a finding that provides significant insight regarding the impact of orientation on lesion repair processing efficiency.
Asunto(s)
ADN/química , Modelos Moleculares , Conformación de Ácido Nucleico , ADN/genética , TermodinámicaRESUMEN
To accomplish its crucial role, mitochondria require proteins that are produced in the cytosol, delivered by cytosolic Hsp90, and translocated to its interior by the translocase outer membrane (TOM) complex. Hsp90 is a dimeric molecular chaperone and its function is modulated by its interaction with a large variety of co-chaperones expressed within the cell. An important family of co-chaperones is characterized by the presence of one TPR (tetratricopeptide repeat) domain, which binds to the C-terminal MEEVD motif of Hsp90. These include Tom70, an important component of the TOM complex. Despite a wealth of studies conducted on the relevance of Tom70·Hsp90 complex formation, there is a dearth of information regarding the exact molecular mode of interaction. To help fill this void, we have employed a combined experimental strategy consisting of cross-linking/mass spectrometry to investigate binding of the C-terminal Hsp90 domain to the cytosolic domain of Tom70. This approach has identified a novel region of contact between C-Hsp90 and Tom70, a finding that is confirmed by probing the corresponding peptides derived from cross-linking experiments via isothermal titration calorimetry and mitochondrial import assays. The data generated in this study are combined to input constraints for a molecular model of the Hsp90/Tom70 interaction, which has been validated by small angle x-ray scattering, hydrogen/deuterium exchange, and mass spectrometry. The resultant model suggests that only one of the MEEVD motifs within dimeric Hsp90 contacts Tom70. Collectively, our findings provide significant insight on the mechanisms by which preproteins interact with Hsp90 and are translocated via Tom70 to the mitochondria.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Mitocondriales/metabolismo , Neurospora crassa/metabolismo , Proteínas Protozoarias/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Bovinos , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Neurospora crassa/química , Neurospora crassa/genética , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/genéticaRESUMEN
The magnitude and nature of lesion-induced energetic perturbations empirically correlate with mutagenicity/cytotoxicity profiles and can be predictive of lesion outcomes during polymerase-mediated replication in vitro. In this study, we assess the sequence and counterbase-dependent energetic impact of the Thymine glycol (Tg) lesion on a family of deoxyoligonucleotide duplexes. Tg damage arises from thymine and methyl-cytosine exposure to oxidizing agents or radiation-generated free-radicals. The Tg lesion blocks polymerase-mediated DNA replication in vitro and the unrepaired site elicits cytotoxic lethal consequences in vivo. Our combined calorimetric and spectroscopic characterization correlates Tg -induced energetic perturbations with biological and structural properties. Specifically, we incorporate a 5R-Tg isomer centered within the tridecanucleotide sequence 5'-GCGTACXCATGCG-3' (X = Tg or T) which is hybridized with the corresponding complementary sequence 5'-CGCATGNGTACGC-3' (N = A, G, T, C) to generate families of Tg -damaged (Tg ·N) and lesion-free (T·N) duplexes. We demonstrate that the magnitude and nature of the Tg destabilizing impact is dependent on counterbase identity (i.e., A â¼ G < T < C). The observation that a Tg lesion is less destabilizing when positioned opposite purines suggests that favorable counterbase stacking interactions may partially compensate lesion-induced perturbations. Moreover, the destabilizing energies of Tg ·N duplexes parallel their respective lesion-free T·N mismatch counterparts (i.e., G < T < C). Elucidation of Tg-induced destabilization relative to the corresponding undamaged mismatch energetics allows resolution of lesion-specific and sequence-dependent impacts. The Tg-induced energetic perturbations are consistent with its replication blocking properties and may serve as differential recognition elements for discrimination by the cellular repair machinery.
Asunto(s)
ADN/química , Timina/análogos & derivados , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Daño del ADN/genética , Conformación de Ácido Nucleico , Termodinámica , Timina/químicaRESUMEN
α-Synuclein (αS) is an amyloidogenic intrinsically disordered protein implicated in Parkinson's disease, for which copper-mediated pathways of neurodegeneration have been suggested. We have employed nuclear magnetic resonance, circular dichroism, electrospray ionization mass spectrometry, and thioflavin T fluorescence to characterize interactions of Cu(2+) with the physiological acetylated form (Ac-αS). Significantly, N-terminal acetylation abolishes Cu(2+) binding at the high-affinity M1-D2 site present in the nonacetylated protein and maintains Cu(2+) interactions around H50/D121. Fibrillation enhancement observed at an equimolar Cu(2+) stoichiometry with the nonacetylated model does not occur with Ac-αS. These findings open new avenues of investigation into Cu(2+)-mediated neurodegenerative pathology suggested in vivo.
Asunto(s)
Cobre/química , Cobre/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Acetilación , Amiloide/biosíntesis , Sitios de Unión , Dicroismo Circular , Humanos , Manganeso/química , Resonancia Magnética Nuclear Biomolecular , Enfermedad de Parkinson/metabolismoRESUMEN
The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 â¼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 â¼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.
Asunto(s)
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacología , Ipeca/farmacología , Cardiotoxicidad , Antivirales/toxicidadRESUMEN
Accumulation of damaged guanine nucleobases within genomic DNA, including the imidazole ring opened N(6)-(2-Deoxy-α,ß-D-erythro-pentafuranosyl)-2,6-diamino-4-hydroxy-5-formylamidopyrimidine (Fapy-dG), is associated with progression of age-related diseases and cancer. To evaluate the impact of this mutagenic lesion on DNA structure and energetics, we have developed a novel synthetic strategy to incorporate cognate Fapy-dG site-specifically within any oligodeoxynucleotide sequence. The scheme involves the synthesis of an oligonucleotide precursor containing a 5-nitropyrimidine moiety at the desired lesion site via standard solid-phase procedures. Following deprotection and isolation, the Fapy-dG lesion is generated by catalytic hydrogenation and subsequent formylation. NMR assignment of the Fapy-dG lesion (X) embedded within a TXT trimer reveals the presence of rotameric and anomeric species. The latter have been characterized by synthesizing the tridecamer oligodeoxynucleotide d(GCGTACXCATGCG) harboring Fapy-dG as the central residue and developing a protocol to resolve the isomeric components. Hybridization of the chromatographically isolated fractions with their complementary d(CGCATGCGTACGC) counterpart yields two Fapy-dG·C duplexes that are differentially destabilized relative to the canonical G·C parent. The resultant duplexes exhibit distinct thermal and thermodynamic profiles that are characteristic of α- and ß-anomers, the former more destabilizing than the latter. These anomer-specific impacts are discussed in terms of differential repair enzyme recognition, processing and translesion synthesis.
Asunto(s)
Daño del ADN , Formamidas/química , Furanos/química , Oligodesoxirribonucleótidos/química , Pirimidinas/química , Cromatografía por Intercambio Iónico , ADN/química , ADN de Cadena Simple/química , Isomerismo , Mutágenos/química , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/síntesis química , Oligodesoxirribonucleótidos/aislamiento & purificación , TermodinámicaRESUMEN
DNA bulges are biologically consequential defects that can arise from template-primer misalignments during replication and pose challenges to the cellular DNA repair machinery. Calorimetric and spectroscopic characterizations of defect-containing duplexes reveal systematic patterns of sequence-context dependent bulge-induced destabilizations. These distinguishing energetic signatures are manifest in three coupled characteristics, namely: the magnitude of the bulge-induced duplex destabilization (DeltaDeltaG(Bulge)); the thermodynamic origins of DeltaDeltaG(Bulge) (i.e. enthalpic versus entropic); and, the cooperativity of the duplex melting transition (i.e. two-state versus non-two state). We find moderately destabilized duplexes undergo two-state dissociation and exhibit DeltaDeltaG(Bulge) values consistent with localized, nearest neighbor perturbations arising from unfavorable entropic contributions. Conversely, strongly destabilized duplexes melt in a non-two-state manner and exhibit DeltaDeltaG(Bulge) values consistent with perturbations exceeding nearest-neighbor expectations that are enthalpic in origin. Significantly, our data reveal an intriguing correlation in which the energetic impact of a single bulge base centered in one strand portends the impact of the corresponding complementary bulge base embedded in the opposite strand. We discuss potential correlations between these bulge-specific differential energetic profiles and their overall biological implications in terms of DNA recognition, repair and replication.
Asunto(s)
ADN/química , Termodinámica , Rastreo Diferencial de Calorimetría , Reparación del ADN , Replicación del ADN , Modelos Genéticos , Conformación de Ácido Nucleico , Purinas/química , Pirimidinas/químicaRESUMEN
Drug discovery strategies have advanced significantly towards prioritizing target selectivity to achieve the longstanding goal of identifying "magic bullets" amongst thousands of chemical molecules screened for therapeutic efficacy. A myriad of emerging and existing health threats, including the SARS-CoV-2 pandemic, alarming increase in bacterial resistance, and potentially fatal chronic ailments, such as cancer, cardiovascular disease, and neurodegeneration, have incentivized the discovery of novel therapeutics in treatment regimens. The design, development, and optimization of lead compounds represent an arduous and time-consuming process that necessitates the assessment of specific criteria and metrics derived via multidisciplinary approaches incorporating functional, structural, and energetic properties. The present review focuses on specific methodologies and technologies aimed at advancing drug development with particular emphasis on the role of thermodynamics in elucidating the underlying forces governing ligand-target interaction selectivity and specificity. In the pursuit of novel therapeutics, isothermal titration calorimetry (ITC) has been utilized extensively over the past two decades to bolster drug discovery efforts, yielding information-rich thermodynamic binding signatures. A wealth of studies recognizes the need for mining thermodynamic databases to critically examine and evaluate prospective drug candidates on the basis of available metrics. The ultimate power and utility of thermodynamics within drug discovery strategies reside in the characterization and comparison of intrinsic binding signatures that facilitate the elucidation of structural-energetic correlations which assist in lead compound identification and optimization to improve overall therapeutic efficacy.
RESUMEN
In an effort to identify functional-energetic correlations leading to the development of efficient anti-SARS-CoV-2 therapeutic agents, we have designed synthetic analogs of aurintricarboxylic acid (ATA), a heterogeneous polymeric mixture of structurally related linear homologs known to exhibit a host of biological properties, including antiviral activity. These derivatives are evaluated for their ability to interact with a plasma transporter protein (human serum albumin), eukaryotic (yeast) ribosomes, and a SARS-CoV-2 target, the RNA-dependent RNA polymerase (RdRp). The resultant data are critical for characterizing drug distribution, bioavailability, and effective inhibition of host and viral targets. Promising lead compounds are selected on the basis of their binding energetics which have been characterized and correlated with functional activities as assessed by inhibition of RNA replication and protein synthesis. Our results reveal that the activity of heterogeneous ATA is mimicked by linear compounds of defined molecular weight, with a dichlorohexamer salicylic-acid derivative exhibiting the highest potency. These findings are instrumental for optimizing the design of structurally defined ATA analogs that fulfill the requirements of an antiviral drug with respect to bioavailability, homogeneity, and potency, thereby expanding the arsenal of therapeutic regimens that are currently available to address the urgent need for effective SARS-CoV-2 treatment strategies.
RESUMEN
We report a continuous hyperchromicity assay (CHA) for monitoring and characterizing enzyme activities associated with DNA processing. We use this assay to determine kinetic and thermodynamic parameters for a repair enzyme that targets nucleic acid substrates containing a specific base lesion. This optically based kinetics assay exploits the free-energy differences between a lesion-containing DNA duplex substrate and the enzyme-catalyzed, lesion-excised product, which contains at least one hydrolyzed phosphodiester bond. We apply the assay to the bifunctional formamidopyrimidine glycosylase (Fpg) repair enzyme (E) that recognizes an 8-oxodG lesion within a 13-mer duplex substrate (S). Base excision/elimination yields a gapped duplex product (P) that dissociates to produce the diagnostic hyperchromicity signal. Analysis of the kinetic data at 25 degrees C yields a K(m) of 46.6 nM for the E.S interaction, and a k(cat) of 1.65 min(-1) for conversion of the ES complex into P. The temperature dependence reveals a free energy (DeltaG(b)) of -10.0 kcal.mol(-1) for the binding step (E + S <--> ES) that is enthalpy-driven (DeltaH(b) = -16.4 kcal.mol(-1)). The activation barrier (DeltaG) of 19.6 kcal.mol(-1) for the chemical step (ES <--> P) also is enthalpic in nature (DeltaH = 19.2 kcal.mol(-1)). Formation of the transition state complex from the reactants (E + S <--> ES), a pathway that reflects Fpg catalytic specificity (k(cat)/K(m)) toward excision of the 8-oxodG lesion, exhibits an overall activation free energy (DeltaG(T)) of 9.6 kcal.mol(-1). These parameters characterize the driving forces that dictate Fpg enzyme efficiency and specificity and elucidate the energy landscape for lesion recognition and repair.
Asunto(s)
Reparación del ADN , ADN-Formamidopirimidina Glicosilasa/química , ADN/química , Termodinámica , Catálisis , Daño del ADN , ADN-Formamidopirimidina Glicosilasa/metabolismo , Escherichia coli/metabolismo , Ésteres/química , Hidrólisis , Cinética , Modelos Químicos , Conformación de Ácido Nucleico , Nucleótidos/química , Reproducibilidad de los Resultados , Temperatura , Factores de TiempoRESUMEN
The energetic profiles of a significant number of protein-DNA systems at 20 degrees C reveal that, despite comparable Gibbs free energies, association with the major groove is primarily an enthalpy-driven process, whereas binding to the minor groove is characterized by an unfavorable enthalpy that is compensated by favorable entropic contributions. These distinct energetic signatures for major versus minor groove binding are irrespective of the magnitude of DNA bending and/or the extent of binding-induced protein refolding. The primary determinants of their different energetic profiles appear to be the distinct hydration properties of the major and minor grooves; namely, that the water in the A+T-rich minor groove is in a highly ordered state and its removal results in a substantial positive contribution to the binding entropy. Since the entropic forces driving protein binding into the minor groove are a consequence of displacing water ordered by the regular arrangement of polar contacts, they cannot be regarded as hydrophobic.
Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Composición de Base , Sitios de Unión , Entropía , Modelos Químicos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Pliegue de Proteína , Electricidad Estática , TermodinámicaRESUMEN
Integrin receptors bind collagen via metal-mediated interactions that are modulated by magnesium (Mg2+) levels in the extracellular matrix. Nuclear magnetic resonance-based relaxation experiments, isothermal titration calorimetry, and adhesion assays reveal that Mg2+ functions as both a structural anchor and dynamic switch of the α1ß1 integrin I domain (α1I). Specifically, Mg2+ binding activates micro- to millisecond timescale motions of residues distal to the binding site, particularly those surrounding the salt bridge at helix 7 and near the metal ion-dependent adhesion site. Mutagenesis of these residues impacts α1I functional activity, thereby suggesting that Mg-bound α1I dynamics are important for collagen binding and consequent allosteric rearrangement of the low-affinity closed to high-affinity open conformation. We propose a multistep recognition mechanism for α1I-Mg-collagen interactions involving both conformational selection and induced-fit processes. Our findings unravel the multifaceted role of Mg2+ in integrin-collagen recognition and assist in elucidating the molecular mechanisms by which metals regulate protein-protein interactions.
Asunto(s)
Sustitución de Aminoácidos , Aminoácidos/química , Colágeno Tipo I/química , Integrina alfa1beta1/química , Magnesio/química , Aminoácidos/metabolismo , Animales , Sitios de Unión , Cationes Bivalentes , Clonación Molecular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Matriz Extracelular/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Integrina alfa1beta1/genética , Integrina alfa1beta1/metabolismo , Cinética , Magnesio/metabolismo , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
Integrin-collagen interactions play a critical role in a myriad of cellular functions that include immune response, and cell development and differentiation, yet their mechanism of binding is poorly understood. There is increasing evidence that conformational flexibility assumes a central role in the molecular mechanisms of protein-protein interactions and here we employ NMR hydrogen-deuterium exchange (HDX) experiments to explore the impact of slower timescale dynamic events. To gain insight into the mechanisms underlying collagen-induced conformational switches, we have undertaken a comparative study between the wild type integrin α1 I and a gain-of-function E317A mutant. NMR HDX results suggest a relationship between regions exhibiting a reduced local stability in the unbound I domain and those that undergo significant conformational changes upon binding. Specifically, the αC and α7 helices within the C-terminus are at the center of such major perturbations and present reduced local stabilities in the unbound state relative to other structural elements. Complementary isothermal titration calorimetry experiments have been performed to derive complete thermodynamic binding profiles for association of the collagen-like triple-helical peptide with wild type α1 I and E317A mutant. The differential energetics observed for E317A are consistent with the HDX experiments and support a model in which intrinsically destabilized regions predispose conformational rearrangement in the integrin I domain. This study highlights the importance of exploring different timescales to delineate allosteric and binding events.
Asunto(s)
Colágeno/química , Integrina alfa1/química , Sustitución de Aminoácidos , Colágeno/genética , Colágeno/metabolismo , Humanos , Integrina alfa1/genética , Integrina alfa1/metabolismo , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de ProteínaRESUMEN
As part of an overall effort to map the energetic landscape of the base excision repair pathway, we report the first thermodynamic characterization of repair enzyme binding to lesion-containing duplexes. Isothermal titration calorimetry (ITC) in conjunction with spectroscopic measurements and protease protection assays have been employed to characterize the binding of Escherichia coli formamidopyrimidine-glycosylase (Fpg), a bifunctional repair enzyme, to a series of 13-mer DNA duplexes. To resolve energetically the binding and the catalytic events, several of these duplexes are constructed with non-hydrolyzable lesion analogs that mimic the natural 8-oxo-dG substrate and the abasic-like intermediates. Specifically, one of the duplexes contains a central, non-hydrolyzable, tetrahydrofuran (THF) abasic site analog, while another duplex contains a central, carbocyclic substrate analog (carba-8-oxo-dG). ITC-binding studies conducted between 5.0 degrees C and 15.0 degrees C reveal that Fpg association with the THF-containing duplex is characterized by binding free energies that are relatively invariant to temperature (deltaG approximately -9.5 kcalmol(-1)), in contrast to both the reaction enthalpy and entropy that are strongly temperature-dependent. Complex formation between Fpg and the THF-containing duplex at 15 degrees C exhibits an unfavorable association enthalpy (deltaH=+7.5 kcalmol(-1)) that is compensated by a favorable association entropy (TdeltaS=+17.0 kcalmol(-1)). The entropic nature of the binding interaction, coupled with the large negative heat capacity (deltaC(p)=-0.67 kcaldeg(-1)mol(-1)), is consistent with Fpg complexation to the THF-containing duplex involving significant burial of non-polar surface areas. By contrast, under the high ionic strength buffer conditions employed herein (200 mM NaCl), no appreciable Fpg affinity for the carba-8-oxo-dG substrate analog is detected. Our results suggest that initial Fpg recognition of a damaged DNA site is predominantly electrostatic in nature, and does not involve large contact interfaces. Subsequent base excision presumably facilitates accommodation of the resulting lesion site into the binding pocket, as the enzyme interaction with the THF-containing duplex is characterized by high affinity and a large negative heat capacity change. Our data are consistent with a pathway in which Fpg glycosylase activity renders the base excision product a preferred ligand relative to the natural substrate, thereby ensuring the fidelity of removing highly reactive and potentially mutagenic abasic-like intermediates through catalytic elimination reactions.
Asunto(s)
Daño del ADN , Reparación del ADN/fisiología , Proteínas de Escherichia coli , N-Glicosil Hidrolasas/metabolismo , Secuencia de Bases , Sitios de Unión , Calorimetría , Dicroismo Circular , ADN-Formamidopirimidina Glicosilasa , Metabolismo Energético , Escherichia coli/enzimología , N-Glicosil Hidrolasas/química , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Especificidad por Sustrato , TermodinámicaRESUMEN
Reverse transcriptase is an essential retroviral enzyme that replicates the single-stranded RNA genome of the retrovirus producing a double-stranded DNA copy, which is subsequently integrated into the host's genome. We have previously reported that processive DNA synthesis of Moloney murine leukemia virus reverse transcriptase (MMLV RT) is severely compromised by substitution of an Ala for the fingers domain residue Arg 116. In order to further investigate the role of Arg 116 in interactions of MMLV RT with nucleic acids, we have determined the crystal structure of the R116A N-terminal fragment and characterized the binding of two self-complementary DNA duplexes [d(CATGCATG)2 and d(CGCGCGCG)2] to both the wild-type and R116A fragments by isothermal titration calorimetry. The resultant thermodynamic profiles extrapolated to 25 degrees C reveal that binding of the wild-type N-terminal fragment to both DNA duplexes is enthalpy-driven and characterized by an unfavorable entropy. Although the temperature dependence of the respective protein-DNA binding enthalpies is markedly different reflecting distinct heat capacity changes, the binding free energies are nearly identical and relatively invariant to temperature (DeltaG approximately -6.0 kcal x mol(-1)). In contrast to the wild-type fragment, the R116A fragment exhibits no measurable affinity for either DNA duplex, yet its crystal structure reveals no significant changes when compared to the wild-type structures. We suggest that hydrogen-bonding interactions involving the fingers domain residue Arg 116 are critical for DNA binding as well as processive DNA synthesis by MMLV RT.
Asunto(s)
ADN/metabolismo , Virus de la Leucemia Murina de Moloney/enzimología , ADN Polimerasa Dirigida por ARN/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Calorimetría , Dominio Catalítico , Cristalografía , Enlace de Hidrógeno , Modelos Moleculares , Mutación , Oligodesoxirribonucleótidos/metabolismo , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , ADN Polimerasa Dirigida por ARN/química , TermodinámicaRESUMEN
The targeting of type III secretion (TTS) proteins at the injectisome is an important process in bacterial virulence. Nevertheless, how the injectisome specifically recognizes TTS substrates among all bacterial proteins is unknown. A TTS peripheral membrane ATPase protein located at the base of the injectisome has been implicated in the targeting process. We have investigated the targeting of the EspA filament protein and its cognate chaperone, CesAB, to the EscN ATPase of the enteropathogenic E. coli (EPEC). We show that EscN selectively engages the EspA-loaded CesAB but not the unliganded CesAB. Structure analysis revealed that the targeting signal is encoded in a disorder-order structural transition in CesAB that is elicited only upon the binding of its physiological substrate, EspA. Abrogation of the interaction between the CesAB-EspA complex and EscN resulted in severe secretion and infection defects. Additionally, we show that the targeting and secretion signals are distinct and that the two processes are likely regulated by different mechanisms.