RESUMEN
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
RESUMEN
A triblock amphiphilic polymer derived from the copolymerization of CO2 and epoxides containing a bipyridine rhenium complex in its backbone is shown to effectively catalyze the visible-light-driven reduction of CO2 to CO. This polymer provides uniformly spherical micelles in aqueous solution, where the metal catalyst is sequestered in the hydrophobic portion of the nanostructured micelle. CO2 to CO reduction occurs in an efficient visible-light-driven process in aqueous media with turnover numbers up to 110 (>99 % selectivity) in the absence of a photosensitizer, which is a 37-fold enhancement over the corresponding molecular rhenium catalyst in organic solvent. Notably, the amphiphilic polycarbonate micelle rhenium catalyst suppresses H2 generation, presumably by preventing deactivation of the active catalytic center by water.
RESUMEN
The photocatalytic reduction of CO2 into fuels offers the prospect for creating a new CO2 economy. Harnessing visible light-driven CO2 -to-CO reduction mediated by the long-lived triplet excited state of rhenium(I) tricarbonyl complexes is a challenging approach. We here develop a series of new mononuclear rhenium(I) tricarbonyl complexes (Re-1-Re-4) based on the imidazole-pyridine skeleton for photo-driven CO2 reduction. These catalysts are featured by combining pyridyl-imidazole with the aromatic ring and different pendant organic groups onto the N1 position of 1,3-imidazole unit, which display phosphorescence under Ar-saturated solution even at ambient conditions. By contrast, {Re[9-(pyren-1-yl)-10-(pyridin-2-yl)-9H-pyreno[4,5-d]imidazole)](CO)3 Cl} (Re-4) by introducing pyrene ring at the N1 position of pyrene-fused imidazole unit exhibits superior catalytic performance with a higher turnover number for CO (TONCO =124) and >99.9 % selectivity, primarily ascribed to the strong visible light-harvesting ability, long-lived triplet lifetimes (164.2â µs) and large reductive quenching constant. Moreover, the rhenium(I) tricarbonyl complexes derived from π-extended pyrene chromophore exhibit a long lifetime corresponding to its ligand-localized triplet state (3 IL) evidenced from spectroscopic investigations and DFT calculations.
RESUMEN
Compounds bearing organophosphorus motifs and 2-oxazolidinone have found numerous applications in pharmaceutical chemistry, homogeneous catalysis, and organic materials. Here, we describe an efficient and selective protocol for straightforward access to a series of 5-((diarylphosphoryl)methyl)oxazolidin-2-ones via the copper-catalyzed difunctionalization of the C≡C bond of propargylic amines with CO2 and phosphine oxide. Notably, copper catalysis is a sustainable and benign catalytic mode. This reaction proceeds under mild reaction conditions, which is operationally simple and scalable with a broad scope, exclusive selectivity, and good functional group compatibility. Mechanistic studies suggest a one-pot tandem cyclization/radical addition sequence, along with the phosphorylation/cyclization scheme.
RESUMEN
Incorporation of CO into substrates to construct high-value carbonyl compounds is an intensive industrial carbonylation procedure, however, high toxicity and wide explosion limits (12.5-74.0 vol% in air) of CO limit its application in industrial production. The development of a CO-free catalytic system for carbonylation is one of ideal methods, but full of challenge. Herein, this study reports the CO-free aminocarbonylation conversion of terminal alkynes synergistically catalyzed by a unique Co(ÐÐ)/Ag(Ð) metal-organic framework (MOF), in which the combination of isocyanides and O2 is employed as safe and green source of aminocarbonyl. This reaction has broad substrate applicability in terminal alkyne and isocyanides components with 100% atom economy. The bimetal MOF catalyst can be recycled at least five times without substantial loss of catalytic activities. Mechanistic investigations demonstrate that the synergistic effect between Ag(I) and Co(II) sites can efficiently activate terminal alkyne and isocyanides, respectively. Free radical capture experiments, FT-IR analysis and theoretical explorations further reveal that terminal alkynes and isocyanides can be catalytically transformed into an anionic intermediate through heterolysis pathways. This work provides secure and practical access to carbonylation as well as a new approach to aminocarbonylation of terminal alkynes.
RESUMEN
The straightforward synthesis of α-amino phosphine oxides via three-component reactions involving arynes, formamides and diarylphosphine oxides is disclosed. This method employs the aryne to activate formamide, without an external activating reagent, which is operationally simple under mild conditions with high efficiency. Furthermore, mechanistic perception suggests a cascade sequence including formal [2 + 2] cycloaddition of the aryne with a CîO bond, and a 1,4-addition of the H-P(O) compounds to the enamine intermediates.