Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Water Sci Technol ; 87(3): 761-782, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789716

RESUMEN

Chlorinated hydrocarbons (CHCs) are often used in industrial processes, and they have been found in groundwater with increasing frequency in recent years. Several typical CHCs, including trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), carbon tetrachloride (CT), etc., have strong cytotoxicity and carcinogenicity, posing a serious threat to human health and ecological environment. Advanced persulfate (PS) oxidation technology based on nano zero-valent iron (nZVI) has become a research hotspot for CHCs degradation in recent years. However, nZVI is easily oxidized to form the surface passivation layer and prone to aggregation in practical application, which significantly reduces the activation efficiency of PS. In order to solve this problem, various nZVI modification solutions have been proposed. This review systematically summarizes four commonly used modification methods of nZVI, and the theoretical mechanisms of PS activated by primitive and modified nZVI. Besides, the influencing factors in the engineering application process are discussed. In addition, the controversial views on which of the two (SO4·- and ·OH) is dominant in the nZVI/PS system are summarized. Generally, SO4·- predominates in acidic conditions while ·OH prefers neutral and alkaline environments. Finally, challenges and prospects for practical application of CHCs removal by nZVI-based materials activating PS are also analyzed.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Humanos , Hierro , Contaminantes Químicos del Agua/análisis , Tricloroetileno/análisis , Oxidación-Reducción
2.
Environ Res ; 203: 111869, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411549

RESUMEN

University students are constantly exposed to potential bacterial pathogens and environmental pollutants in indoor environment because they spend most of their time indoors. University dormitory and printing shop are two typical indoor environments frequented by university students. However, little is known about the characteristics of bacterial community as well as the effect of indoor environmental factors on them. 16S rRNA gene sequencing was used to reveal the bacterial community in indoor dust, electronic devices were recorded during dust sampling, and polybrominated diphenyl ethers (PBDEs) were detected by gas chromatography mass spectrometry (GC-MS). Proteobacteria, Actinobacteria and Firmicutes were leading phyla, and Acinetobacter, Paracoccus and Kocuria were dominating genera. The predominant genera showed Acinetobacter > Paracoccus > unidentified Corynebacteriaceae in indoor dusts from university dormitories, whereas Paracoccus > unidentified Cyanobacteria > Acinetobacter in printing shops. The occurrence of Acinetobacter, Kocuria, Corynebacterium, Pseudomonas, and Bacillus suggested the health risks of potential pathogenic bacteria to university students. Significant differences of microbial composition and diversity were proved between university dormitories and printing shops. Chemoheterotrophy and aerobic chemoheterotrophy were dominant bacterial functions, and the seven primary bacterial functions displayed university dormitory > printing shop. BDE 138 and BDE 66 were main environmental parameters affecting the indoor dust bacterial community in university dormitory, while printer and BDE 47 played dominating role in shaping microorganism in printing shop. The complex biotic (potential bacterial pathogens) and abiotic factors (electronic equipment and chemical pollutants) in indoor dusts may pose potential health risks to university students.


Asunto(s)
Contaminación del Aire Interior , Polvo , Contaminación del Aire Interior/análisis , Bacterias/genética , Polvo/análisis , Monitoreo del Ambiente , Éteres Difenilos Halogenados/análisis , Humanos , ARN Ribosómico 16S/genética , Estudiantes , Universidades
3.
Water Sci Technol ; 81(10): 2066-2077, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32701487

RESUMEN

Selective removal of petroleum hydrocarbons (PHCs) from soil washing effluents is the key to the surfactant-enhanced soil washing technology. In this study, the diatomite was modified by nonionic surfactant TX-100 and applied in the selective adsorption of PHCs in the soil washing effluents. The modified diatomites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, N2 adsorption/desorption and X-ray photoelectron spectroscopy respectively. The adsorption process followed the pseudo-second-order model and the adsorption isotherms indicated that the interaction between PHCs and modified diatomite was monolayer adsorption. The important operating factors such as TX-100 dosage, adsorbent dosage, time and temperature were optimized. With the participation of the low-cost adsorbent TX3-Db with high adsorption capacity, the recovery efficiency of the washing effluents was still up to 78.9% after three cycles. A selective adsorption mechanism, based on steric hindrance and electrostatic repulsion, was proposed to explain the removal of PHCs from washing effluents.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Tierra de Diatomeas , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
4.
Sci Total Environ ; 944: 173839, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38871317

RESUMEN

The persulfate-based electrochemical advanced oxidation processes (PS-EAOPs) exhibit distinctive advantages in the degradation of emerging contaminants (ECs) and have garnered significant attention among researchers, leading to a consistent surge in related research publications over the past decade. Regrettably, there is still a lack of a critical review gaining deep into understanding of ECs degradation by PS-EAOPs. To address the knowledge gaps, in this review, the mechanism of electro-activated PS at the interface of the electrodes (anode, cathode and particle electrodes) is elaborated. The correlation between these electrode materials and the activation mechanism of PS is systematically discussed. The strategies for improving the performance of electrode material that determining the efficiency of PS-EAOPs are also summarized. Then, the applications of PS-EAOPs for the degradation of ECs are described. Finally, the challenges and outlook of PS-EAOPs are discussed. In summary, this review offers valuable guidance for the degradation of ECs by PS-EAOPs.

5.
Sci Total Environ ; 933: 172935, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38703859

RESUMEN

The deleterious impact of pollution point sources on the surrounding environment and human has long been a focal point of environmental research. When considering the local atmospheric dispersion of semi-volatile organic compounds (SVOCs) around the emission sites, it is essential to account the dynamic process for the gas/particle (G/P) partitioning, which involves the transition from an initial state to a steady state. In this study, we have developed a model that enables the prediction of the dynamic process for G/P partitioning of SVOCs, particularly considering the influence from emission. It is important to note that the dynamic processes of the concentrations of SVOCs in particle phase (CP) and in gas phase (CG) differ significantly. These differences arise due to the influence of two critical factors: particulate proportion of SVOCs in the emissions (ϕ0) and octanol-air partitioning coefficient (KOA). The validity of our model was assessed by comparing its predictions of the extremum value of the G/P partitioning quotient (KP) with the results obtained from the steady-state model. Remarkably, the characteristic time (tC), used to evaluate the timescale required for SVOCs to reach steady state, demonstrated different variations with KOA for CP and CG. Additionally, the values of tC were quite different for CP and CG, which were markedly influenced by ϕ0. For some SVOCs with high KOA values, it took approximately 35 h to reach steady state. Furthermore, it was found that the time to achieve 95 % of steady state (t95 ≈ 3tC) could reach approximately 105 h. This duration is sufficient for chemicals to disperse from their emission site to the surrounding areas. Therefore, it is crucial to consider the dynamic process of G/P partitioning in local atmospheric transport studies. Moreover, the influence of ϕ0 should be incorporated into future investigations examining the dynamic process of G/P partitioning.

6.
Sci Total Environ ; 902: 166476, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625711

RESUMEN

The remediation of low-concentration phosphorus polluted surface water (LP-SW) is one of most challenging environmental issues worldwide. Adsorption is more suitable for LP-SW remediation due to its low cost and operability. Based on the strategy of functional complementation among industrial solid wastes (ISWs), ISW-based phosphate absorbent material (PAM) was prepared from coal ash (CA, binder), rich­calcium (Ca) carbide slag (CS, active component) and iron salt (functional reagent) by optimizing materials ratios and roasting conditions. PAM prepared under optimal conditions (Fe/CC-2opt) had good phosphate adsorption efficiency. Notably, Fe/CC-2opt not only ensured that the effluent met Environmental Quality Standards for Surface Water (pH = 6.0-9.0), but also facilitated the formation of brushite instead of hydroxyapatite due to FeSO4 addition. Compared with hydroxyapatite, brushite had greater potential application value as fertilizer due to its solubility and high P/Ca ratio. The possible mechanisms of phosphate adsorption by PAM included surface precipitation, surface complexation, electrostatic adsorption and release of Ca2+/OH-. Preparation cost of PAM was 80 US$/ton, and treatment cost was 0.07 US$/g P. Regeneration efficiency of PAM was still above 80 % after five cycles. The design idea and result of this study provide theoretical basis and technical support for the preparation of PAM with low cost, commercial production and great adsorption capacity.

7.
Nanoscale ; 14(21): 7849-7855, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583071

RESUMEN

The development of cost-efficient catalysts with good catalytic activity is an urgent task for polychlorinated aromatic hydrocarbon (PCAH) oxidation. Herein, atomically dispersed Ru catalysts (denoted as Ru ADCs) proved by aberration corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption spectroscopy were synthesized for PCAH oxidation. The oxidation results showed that 0.2 Ru ADCs exhibited enhanced catalytic activity (T50% < 250 °C, T90% < 300 °C) compared with the T90% > 300 °C on 0.2 Ru nanoparticles (NPs). Besides, 0.2 Ru ADCs demonstrated high CO2 yield with >60% CO2 ratio, along with good stability (>80% conversion for 800 mins). The better performance of 0.2 Ru ADCs was verified by kinetic experiments, in which, the apparent activation energy associated with 0.2 Ru ADCs (50.8 kJ mol-1) was significantly lower compared with that with 0.2 Ru NPs (80.0 kJ mol-1). The superior oxidation activity of 0.2 Ru ADCs was also applied to toluene oxidation. H2 temperature-programmed reduction ensured the stronger interaction of Ru species with the supports in Ru ADCs than that in Ru NPs, thus inhibiting Ru species aggregation and favoring their higher dispersion ensured by CO temperature-programmed desorption. The present work provides a potential strategy to maximize the usage of noble metal catalysts for PCAH oxidation.

8.
Chemosphere ; 303(Pt 1): 134948, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35577130

RESUMEN

The electrochemical technologies for water treatment have flourished over the last decades. However, it is still challenging to treat the actual complex water effluents by a single electrochemical process, often requiring coupling of technologies. In this study, an upgraded peroxi-coagulation (PC) process with a magnetically assembled mZVI/DSA anode has been devised for the first time. COD, NH3-N and total phosphorous were simultaneously and effectively removed from livestock wastewater. The advantages, influence of key parameters and evolution of electrogenerated species were systematically investigated to fully understand this novel PC process. The fluorescent substances in livestock wastewater could also be almost removed under optimal conditions (300 mA, 0.2 g ZVI particles and pH 6.8). The interaction between OH and active chlorine yielded ClO with a high steady-state concentration of 6.85 × 10-13 M, which did not cause COD removal but accelerated the oxidation of NH3-N. The Mulliken population suggested that OH and NH3-N had similar electron-donor behavior, whereas ClO acted as an electron-withdrawing species. Besides, although the energy barrier for the reaction between OH and NH3-N (17.0 kcal/mol) was lower than that with ClO (18.8 kcal/mol), considering the tunneling in the H abstraction reaction, the Skodje-Truhlar method adopted for calculations evidenced a 17-fold faster NH3-N oxidation rate with ClO. In summary, this work describes an advantageous single electrochemical process for the effective treatment of a complex water matrix.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Electrodos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
9.
Environ Sci Pollut Res Int ; 29(42): 63533-63544, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35460000

RESUMEN

Morphology engineering was an effective strategy for 1,2-dichlorobenzene (o-DCB) oxidation. Herein, TiO2 nanosheet supported MnCeOx (TiMn15Ce30-NS) showed excellent catalytic activity with T50% = 156 °C and T90% = 238 °C, which was better than the T50% = 213 °C and T90% = 247 °C for TiO2 nano truncated octahedron supported MnCeOx (TiMn15Ce30-NTO). TiMn15Ce30-NS also exhibited enhanced water resistance (T50% = 179 °C, T90% = 240 °C), and good stability with the o-DCB conversion retained at 98.9% for 12 h at 350 °C. The excellent catalytic activity of TiMn15Ce30-NS could be mainly ascribed to the preferentially exposed {001} crystal plane and Ce addition which favored the higher concentration of Mn4+ and surface active oxygen, along with stronger interaction between MnOx and CeOx. The present results deepen the understanding of the morphology-dependent effect on o-DCB oxidation.

10.
Environ Sci Pollut Res Int ; 29(18): 26312-26321, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34853995

RESUMEN

Exploring the fate of nitrogen pollutants in constructed wetlands (CWs) fed by industrial tailwater is significant to strengthen its pollution control and promoting the development of CWs in the field of micro-polluted water treatment. In this study, the distribution coefficients and the environmental risks of nitrogen pollutants between water and sediment of the hybrid CW in Tianjin were systematically investigated. From a spatial perspective, the nitrogen pollutants could be removed in this hybrid CW, and subsurface flow wetland played a key role in nitrogen pollutant removal. From a temporal perspective, the concentration of nitrogen pollutants was largely affected by the dissolved oxygen (DO) and temperature. The distribution coefficient of nitrogen pollutants between water and sediment was further clarified, suggesting that NH4+-N was more likely to be enriched in sediments due to microbial process. The overall level of pollution in hybrid CW was moderate according to the nutritional pollution index (NPI) analysis. The risk assessment indicated that timely dredging control measures should be considered to maintain the performance of hybrid CW.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , China , Contaminantes Ambientales/análisis , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis , Humedales
11.
Front Microbiol ; 13: 1053169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620007

RESUMEN

Trichloroethylene (TCE) is a ubiquitous chlorinated aliphatic hydrocarbon (CAH) in the environment, which is a Group 1 carcinogen with negative impacts on human health and ecosystems. Based on a series of recent advances, the environmental behavior and biodegradation process on TCE biodegradation need to be reviewed systematically. Four main biodegradation processes leading to TCE biodegradation by isolated bacteria and mixed cultures are anaerobic reductive dechlorination, anaerobic cometabolic reductive dichlorination, aerobic co-metabolism, and aerobic direct oxidation. More attention has been paid to the aerobic co-metabolism of TCE. Laboratory and field studies have demonstrated that bacterial isolates or mixed cultures containing Dehalococcoides or Dehalogenimonas can catalyze reductive dechlorination of TCE to ethene. The mechanisms, pathways, and enzymes of TCE biodegradation were reviewed, and the factors affecting the biodegradation process were discussed. Besides, the research progress on material-mediated enhanced biodegradation technologies of TCE through the combination of zero-valent iron (ZVI) or biochar with microorganisms was introduced. Furthermore, we reviewed the current research on TCE biodegradation in field applications, and finally provided the development prospects of TCE biodegradation based on the existing challenges. We hope that this review will provide guidance and specific recommendations for future studies on CAHs biodegradation in laboratory and field applications.

12.
Chemosphere ; 291(Pt 1): 132724, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34718013

RESUMEN

Accurately revealing and predicting the presence and risks of per-/poly-fluoroalkyl substances (PFASs) in constructed wetlands (CWs) is great significant for the construction and management of CWs, but very challenging. In this work, a novel fate and transport model was for the first time established to evaluate the spatially continuous distribution and environmental risks of PFASs among multi-media in Lingang hybrid CW fed by industry tailwater. 20 PFASs were detected from the Lingang CW, and the total concentration of the detected PFASs in water and sediments were in the range of 38.94-81.65 ng/L and 1.23-4.31 ng/g, respectively. PFOA, PFOS and PFBS were the main pollutants in water and sediments. A fate and transport model describing the distribution characteristics and fate of PFASs in Lingang hybrid CW was constructed, and its reliability was verified. The simulated results suggested that PFASs were mainly accumulated in sediments and long-chain PFASs were more easily adsorbed by sediments compared with short-chain PFASs. According to the principal component analysis-multiple linear regression (PCA-MLR), PFASs mainly came from the tailwater from the surrounding sewage treatment plants. Besides, the environmental risks were predicted by this novel model, suggesting that the risks still cannot be neglected due to the accumulation and continuous input of PFASs although the environmental risks of Lingang CW were low. This work provides a novel model for the understanding of presence and risks of PFASs among multi-media in CWs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , China , Monitoreo del Ambiente , Fluorocarburos/análisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Humedales
13.
Sci Total Environ ; 800: 149601, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426304

RESUMEN

In-depth understanding and accurately predicting the occurrence and fate of polycyclic aromatic hydrocarbons (PAHs) in constructed wetlands (CWs) is extremely crucial for optimizing the CWs construction and strengthening the risk control. However, few studies have focused on the PAHs among sediment-water-plant and model simulation in CWs. In this study, sediment, surface water and reed samples were gathered and analyzed from a typical CW. The concentrations of 16 PAHs (Σ16PAHs) in sediments, surface water and reeds ranged from 620 to 4277 µg/kg, 114 to 443 ng/L and 74.5 to 362 µg/kg, respectively. The coefficients of variation (CV) were calculated as 0.796, 0.431 and 0.473 for the above three media respectively, indicating that the spatial distribution variation was medium intensity. The fugacity fraction (ff) suggested that sediments might act as the secondary release source of most PAHs. According to the diagnostic ratios and principal component analysis-multiple linear regression (PCA-MLR), PAHs in this CW mainly come from fossil fuels combustion and petroleum leakage. PAHs in sediments showed high ecological risk at water inlet and moderate risk at the other functional zones, while low risks for surface water at all functional zones. Although the human health risk assessment indicated relatively low cancer risk, the health risk still cannot be ignored with the continuous input and accumulation of exogenous PAHs. A mathematical model covering the hydraulics parameters and composition characteristics of the wetland was established, and its reliability was verified. The simulated results obtained by the established model were basically consistent with the measured values. In addition, the total remove efficiency of PAHs in surface water was 40.2%, which calculated by the simulated model. This work provides helpful insight into the comprehension of occurrence and fate of PAHs among multi-media in CWs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Reproducibilidad de los Resultados , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Humedales
14.
Chemosphere ; 277: 130219, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33774246

RESUMEN

In this study, an integrated migration and transformation (IMT) model based on microbial action, plant absorption, sediment release and substrate adsorption was firstly established to evaluate the temporal-spatial distribution of N and P in Lingang hybrid constructed wetland (CW), Tianjin. Compared to the conventional transformation model that only considers the microbial action, the IMT model could accurately predict the occurrence characteristics of N and P. In Lingang CW, NO3--N (0.56-3.63 mg/L) was the most important form of N, and the TP was at a relatively low concentration level (0.04-0.07 mg/L). The spatial distribution results showed that a certain amount of N and P could be removed by CW. Form the temporal perspective, the N and P concentrations were greatly affected by the dissolved oxygen (DO). The simulated values obtained by IMT model indicated that the distribution of N and P was more affected by the temporality compared with the spatiality, which was consistent with measured values. Besides, the PCA indicated that TN, NO3--N and DO were important factors, which affected the water quality of CW. The Nemerow pollution index method based on the simulated values indicated that Lingang CW was overall moderately polluted, and the subsurface area was the main functional unit of pollutants removal in CW. This work provides a new model for accurately predicting the occurrence characteristics of N and P pollutants in CW, which is of great significance for identifying its environmental risks and optimizing the construction of wetlands.


Asunto(s)
Fósforo , Humedales , Nitrógeno , Oxígeno , Eliminación de Residuos Líquidos
15.
Chemosphere ; 240: 124962, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31574447

RESUMEN

Pre-magnetized Fe0 (Pre-Fe0) was for the first time applied as heterogeneous catalyst to enhance the oxidation efficiency of electro-Fenton (EF) for the degradation of p-nitrophenol (PNP). The parameters including current, initial pH and pre-Fe0 dosage of Pre-Fe0/EF process were optimized and compared with other two processes (conventional Fe0/EF and electro-oxidation) to confirm its advantage. The rate constants of PNP removal were 1.40-3.82 folds of those by Fe0/EF process under various experimental conditions. The application of pre-Fe0 as catalyst could extend the working pH range from 3.0 to neutral conditions for PNP removal and reduce the Fe0 dosage from 2 to 0.5 mM corresponding to Fe0/EF, avoiding the second pollution of iron sludge. The superiority of Pre-Fe0/EF process was also verified to improve the degradation and mineralization of other phenols and antibiotics. Furthermore, a possible pathway of PNP degradation was revealed by the identification of intermediates and organic acids, and the possible mechanism of pre-Fe0 efficiently enhanced the EF efficiency was proposed. This work demonstrated that such a novel heterogeneous EF process using pre-Fe0 catalyst was clean and promising for the degradation of refractory organic pollutants.


Asunto(s)
Peróxido de Hidrógeno/química , Hierro/química , Campos Magnéticos , Nitrofenoles/metabolismo , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Catálisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción
16.
Nat Commun ; 11(1): 1731, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265452

RESUMEN

Hydrogen peroxide (H2O2) synthesis by electrochemical oxygen reduction reaction has attracted great attention as a green substitute for anthraquinone process. However, low oxygen utilization efficiency (<1%) and high energy consumption remain obstacles. Herein we propose a superhydrophobic natural air diffusion electrode (NADE) to greatly improve the oxygen diffusion coefficient at the cathode about 5.7 times as compared to the normal gas diffusion electrode (GDE) system. NADE allows the oxygen to be naturally diffused to the reaction interface, eliminating the need to pump oxygen/air to overcome the resistance of the gas diffusion layer, resulting in fast H2O2 production (101.67 mg h-1 cm-2) with a high oxygen utilization efficiency (44.5%-64.9%). Long-term operation stability of NADE and its high current efficiency under high current density indicate great potential to replace normal GDE for H2O2 electrosynthesis and environmental remediation on an industrial scale.

17.
Environ Sci Pollut Res Int ; 27(31): 38580-38590, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32623677

RESUMEN

In this study, the occurrence, spatial distribution, sources, and ecological risks of perfluoroalkyl substances (PFASs) in the surface waters of the Lingang hybrid constructed wetland were systematically investigated. Twenty-three PFASs were analyzed from 7 representative sampling zones. The obtained results indicated that PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFOS, and HFPO-DA were frequently detected; and PFBA, PFOA, and PFOS were the dominant PFASs with the relative abundances in ranges of 26.91 to 52.26%, 11.79 to 28.79%, and 0 to 31.98%, respectively. The total concentrations of 8 PFASs (Σ8PFASs) ranged from 25.9 to 56.6 ng/L, and the highest concentration was observed in subsurface flow wetland. Moreover, HFPO-DA with high toxicity was detected in wetlands for the first time. Based on the principal component analysis-multiple linear regression (PCA-MLR) analysis, three sources and their contributions were fluoropolymer processing aids (67.6%), fluororesin coatings and metal plating (17.9%), and food packaging materials and atmospheric precipitation (14.5%), respectively. According to the risk quotients (RQs), the ecological risk of 8 PFASs was low to the aquatic organisms.


Asunto(s)
Ácidos Alcanesulfónicos/análisis , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Humedales
18.
J Hazard Mater ; 368: 771-777, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30739030

RESUMEN

Pharmaceutical and personal care products as one of the micropollutants and bacteria in secondary effluent restrict the water reuse from municipal secondary effluent. Electro-peroxone (EP) process where H2O2 is generated in-situ by electrolysis is an emerging advanced oxidation process and an improvement of traditional peroxone method (O3/H2O2). In this work, a flow-through EP process was compared with ozonation and electrolysis for simultaneous disinfection and degradation of tetracycline (TC). The disinfection effect by EP was higher than the sum of standalone ozone and electrolysis and the coupling coefficient of ozonation and electrolysis in EP process was 1.2. The flow-through EP system presented similar efficiency for separately and simultaneously treating E. coli and TC. For the actual secondary effluent treatment, trihalomethanes, haloacetonitrile and halonitromethanes, the main disinfection by-products, were much lower than the WHO's thresholds for drinking water. TOC and COD removal was 44% and 65%, respectively, at flow rate of 35 mL/min. BOD5, bacteria, pH and other parameters in the effluent could satisfy the recreational landscape water quality standard, and the required energy consumption was 0.47 kW h/m3 at the flow rate 35 mL/min. Most of the degradation products were small-molecule organic acids, and possible degradation pathway of TC was suggested.


Asunto(s)
Antibacterianos/química , Desinfección/métodos , Tetraciclina/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Antibacterianos/toxicidad , Electrólisis , Escherichia coli/crecimiento & desarrollo , Oxidantes/química , Ozono/química , Tetraciclina/toxicidad , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua
19.
J Hazard Mater ; 368: 830-839, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30743230

RESUMEN

Conventionally the deep treatment and disinfection are fulfilled by different processes for municipal wastewater treatment, this work verified a breakthrough by one process of novel flow-through electro-Fenton (EF) with graphene-modified cathode, which is usually seemed to be ineffective. This process was firstly confirmed to be cost-effective for simultaneous sulfadiazines (SDZs) degradation and disinfection from municipal secondary effluent with a very low electrical energy consumption (EEC) of 0.21 kW h/m3, attributed to the high H2O2 production of 4.41 mg/h/cm2 on the novel graphite felt cathode modified by electrochemically exfoliated graphene (EEGr) with a low EEC of 3.08 kW h/(kg H2O2). Compared with the ineffective SDZs degradation by the conventional flow EF, this process was more cost-effective and overcame the harsh requirements on electrolyte concentration. It also showed good effectiveness in the degradation of different antibiotics, and the graphene-modified cathode still kept stable performance after eight consecutive runs. Account for the combined action of OH and active chlorine, the formation of hydroxylated and chlorine containing by-products was confirmed, and a possible degradation mechanism for SDZs was proposed. This flow-through EF process provided an alternative method for the disinfection and antibiotics degradation by one process for the treatment and reuse of municipal secondary effluent.


Asunto(s)
Antibacterianos/química , Desinfección/métodos , Grafito/química , Peróxido de Hidrógeno/química , Hierro/química , Sulfadiazina/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Electrodos , Aguas Residuales
20.
Sci Total Environ ; 697: 134173, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31491636

RESUMEN

Low pH requirement is one of the biggest limitations of the application of traditional Fenton and electro-Fenton (EF) process because FeII/FeIII would precipitate at high pH. In this study, a flow-through EF system operated in batch recirculation mode was constructed. Nitrilotriacetic acid (NTA) was used as a chelating agent in the EF system (NTA/EF) to keep iron soluble at high pH values, producing OH by reaction of H2O2 generated in situ with FeIINTA that obtained by the reduction of FeIIINTA at the cathode. This flow-through NTA/EF system accelerated the mass transfer of target molecules to the electrode surface and showed high efficiency for phenol removal at pH 5-8 with rate constants (k) at around 0.26 min-1, higher than that of the batch test (k = 0.15 min-1) and EF process without NTA (k = 0.16 min-1). The influences of aeration rate, current, flow rate, Fe dose, the ratio of NTA to Fe, pH, and initial phenol concentration on the phenol removal were investigated. The system could be used for at least 3 times for phenol removal without obvious efficiency decline. The flow-through NTA/EF system is promising for the removal of organic contaminants in a wide pH range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA