Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32325964

RESUMEN

Ground-based synthetic aperture radar interferometry (GB-InSAR) is a valuable tool for deformation monitoring. The 2D interferograms obtained by GB-InSAR can be integrated with a 3D terrain model to visually and accurately locate deformed areas. The process has been preliminarily realized by geometric mapping assisted by terrestrial laser scanning (TLS). However, due to the line-of-sight (LOS) deformation monitoring, shadow and layover often occur in topographically rugged areas, which makes it difficult to distinguish the deformed points on the slope between the ones on the pavement. The extant resampling and interpolation method, which is designed for solving the scale difference between the point cloud and radar pixels, does not consider the local scattering characteristics difference of slope. The scattering difference information of road surface and slope surface in the terrain model is deeply weakened. We propose a differentiated method with integrated GB-InSAR and terrain surface point cloud. Local geometric and scattering characteristics of the slope were extracted, which account for pavement and slope differentiating. The geometric model is based on a GB-InSAR system with linear repeated-pass and the topographic point cloud relative observation geometry. The scattering model is based on k-nearest neighbor (KNN) points in small patches varies as radar micro-wave incident angle changes. Simulation and a field experiment were conducted in an open-pit mine. The results show that the proposed method effectively distinguishes pavement and slope surface deformation and the abnormal area boundary is partially relieved.

2.
Sensors (Basel) ; 18(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545150

RESUMEN

An integrated sensor system comprised of a terrestrial laser scanner (TLS), corner reflectors (CRs), and high precision linear rail is utilized to validate ground-based synthetic aperture radar (GB-SAR) interferometric micro-displacement measurements. A rail with positioning accuracy of 0.1 mm is deployed to ensure accurate and controllable deformation. The rail is equipped with a CR on a sliding platform for mobility. Three smaller CRs are installed nearby, each with a reflective sticker attached to the CR's vertex; the CRs present as high-amplitude points both in the GB-SAR images and the TLS point cloud to allow for accurate data matching. We analyze the GB-SAR zero-baseline repeated rail differential interferometry signal model to obtain 2D interferograms of the test site in time series, and then use TLS to obtain a 3D surface model. The model is matched with interferograms to produce more intuitive 3D products. The CR displacements can also be extracted via surface reconstruction algorithm. Finally, we compared the rail sensor measurement and TLS results to optimize coherent scatterer selection and filter the data. The proposed method yields accurate target displacement results via quantitative analysis of GB-SAR interferometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA