Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
FASEB J ; 38(3): e23467, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38329325

RESUMEN

Lumpy skin disease (LSD) is a severe animal infectious disease caused by lumpy skin disease virus (LSDV), inducing extensive nodules on the cattle mucosa or the scarfskin. LSDV genome encodes multiple proteins to evade host innate immune response. However, the underlying molecular mechanisms are poorly understood. In this study, we found that LSDV could suppress the expression of IFN-ß and interferon-stimulated genes (ISGs) in MDBK cells during the early stage of infection. Subsequently, an unbiased screen was performed to screen the LSDV genes with inhibitory effects on the type I interferon (IFN-I) production. ORF127 protein was identified as one of the strongest inhibitory effectors on the expression of IFN-ß and ISGs, meanwhile, the 1-43 aa of N-terminal of ORF127 played a vital role in suppressing the expression of IFN-ß. Overexpression of ORF127 could significantly promote LSDV replication through inhibiting the production of IFN-ß and ISGs in MDBK cells. Mechanism study showed that ORF127 specifically interacted with TBK1 and decreased the K63-linked polyubiquitination of TBK1 which suppressed the phosphorylation of TBK1 and ultimately decreased the production of IFN-ß. In addition, truncation mutation analysis indicated that the 1-43 aa of N-terminal of ORF127 protein was the key structural domain for its interaction with TBK1. In short, these results validated that ORF127 played a negative role in regulating IFN-ß expression through cGAS-STING signaling pathway. Taken together, this study clarified the molecular mechanism of ORF127 gene antagonizing IFN-I-mediated antiviral, which will helpfully provide new strategies for the treatment and prevention of LSD.


Asunto(s)
Interacciones Huésped-Patógeno , Interferón Tipo I , Virus de la Dermatosis Nodular Contagiosa , Proteínas Serina-Treonina Quinasas , Animales , Bovinos , Inmunidad Innata , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Interferón beta/metabolismo , Virus de la Dermatosis Nodular Contagiosa/metabolismo , Transducción de Señal , Ubiquitinación , Proteínas Serina-Treonina Quinasas/metabolismo
2.
J Virol ; 97(3): e0198422, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36877059

RESUMEN

The paramyxoviruses represent a large family of human and animal pathogens that cause significant health and economic burdens worldwide. However, there are no available drugs against the virus. ß-carboline alkaloids are a family of naturally occurring and synthetic products with outstanding antiviral activities. Here, we examined the antiviral effect of a series of ß-carboline derivatives against several paramyxoviruses, including Newcastle disease virus (NDV), peste des petits ruminants virus (PPRV), and canine distemper virus (CDV). Among these derivatives, 9-butyl-harmol was identified as an effective antiviral agent against these paramyxoviruses. Further, a genome-wide transcriptome analysis in combination with target validation strategies reveals a unique antiviral mechanism of 9-butyl-harmol through the targeting of GSK-3ß and HSP90ß. On one hand, NDV infection blocks the Wnt/ß-catenin pathway to suppress the host immune response. 9-butyl-harmol targeting GSK-3ß dramatically activates the Wnt/ß-catenin pathway, which results in the boosting of a robust immune response. On the other hand, NDV proliferation depends on the activity of HSP90. The L protein, but not the NP protein or the P protein, is proven to be a client protein of HSP90ß, rather than HSP90α. 9-butyl-harmol targeting HSP90ß decreases the stability of the NDV L protein. Our findings identify 9-butyl-harmol as a potential antiviral agent, provide mechanistic insights into the antiviral mechanism of 9-butyl-harmol, and illustrate the role of ß-catenin and HSP90 during NDV infection. IMPORTANCE Paramyxoviruses cause devastating impacts on health and the economy worldwide. However, there are no suitable drugs with which to counteract the viruses. We determined that 9-butyl-harmol could serve as a potential antiviral agent against paramyxoviruses. Until now, the antiviral mechanism of ß-carboline derivatives against RNA viruses has rarely been studied. Here, we found that 9-butyl-harmol exerts dual mechanisms of antiviral action, with its antiviral activities being mediated by two targets: GSK-3ß and HSP90ß. Correspondingly, the interaction between NDV infection and the Wnt/ß-catenin pathway or HSP90 is demonstrated in this study. Taken together, our findings shed light on the development of antiviral agents against paramyxoviruses, based on the ß-carboline scaffold. These results present mechanistic insights into the polypharmacology of 9-butyl-harmol. Understanding this mechanism also deepens the host-virus interaction and reveals new drug targets for anti-paramyxoviruses.


Asunto(s)
Antivirales , Enfermedad de Newcastle , Animales , Humanos , Antivirales/farmacología , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Harmina , Virus de la Enfermedad de Newcastle/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo
3.
PLoS Pathog ; 16(6): e1008514, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32479542

RESUMEN

Deoxyribonucleic acid (DNA) damage response (DDR) is the fundamental cellular response for maintaining genomic integrity and suppressing tumorigenesis. The activation of ataxia telangiectasia-mutated (ATM) kinase is central to DNA double-strand break (DSB) for maintaining host-genome integrity in mammalian cells. Oncolytic Newcastle disease virus (NDV) can selectively replicate in tumor cells; however, its influence on the genome integrity of tumor cells is not well-elucidated. Here, we found that membrane fusion and NDV infection triggered DSBs in tumor cells. The late replication and membrane fusion of NDV mechanistically activated the ATM-mediated DSB pathway via the ATM-Chk2 axis, as evidenced by the hallmarks of DSBs, i.e., auto-phosphorylated ATM and phosphorylated H2AX and Chk2. Immunofluorescence data showed that multifaceted ATM-controlled phosphorylation markedly induced the formation of pan-nuclear punctum foci in response to NDV infection and F-HN co-expression. Specific drug-inhibitory experiments on ATM kinase activity further suggested that ATM-mediated DSBs facilitated NDV replication and membrane fusion. We confirmed that the Mre11-RAD50-NBS1 (MRN) complex sensed the DSB signal activation triggered by NDV infection and membrane fusion. The pharmacological inhibition of MRN activity also significantly inhibited intracellular and extracellular NDV replication and syncytia formation. Collectively, these data identified for the first time a direct link between the membrane fusion induced by virus infection and DDR pathways, thereby providing new insights into the efficient replication of oncolytic NDV in tumor cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Células Gigantes , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Virus de la Enfermedad de Newcastle/fisiología , Virus Oncolíticos/fisiología , Replicación Viral , Células A549 , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Embrión de Pollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Gigantes/metabolismo , Células Gigantes/virología , Células HEK293 , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/virología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/genética
4.
Vet Res ; 51(1): 84, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600413

RESUMEN

Newcastle disease (ND), which is caused by Newcastle disease virus (NDV), can cause heavy economic losses to the poultry industry worldwide. It is characterised by extensive pathologies of the digestive, respiratory, and nervous systems and can cause severe damage to the reproductive system of egg-laying hens. However, it is unknown whether NDV replicates in the male reproductive system of chickens and induces any pathologies. In this study, we selected a representative strain (i.e. ZJ1) of the most common genotype (i.e. VII) of NDV to investigate whether NDV can induce histological, hormonal, and inflammatory responses in the testes of specific pathogen free (SPF) roosters. NDV infection increased the expression of toll like receptor TLR3, TLR7, MDA5, IFN-α, IFN-ß, IFN-γ, IL-8, and CXCLi1 in the testes of NDV-infected roosters at 5 days post-infection (dpi). Severe histological changes, including decrease in the number of Sertoli cells and individualized, shrunken spermatogonia with pyknotic nuclei, were observed at 3 dpi. At 5 dpi, the spermatogenic columns were disorganized, and there were fewer cells, which were replaced by necrotic cells, lipid vacuoles, and proteinaceous homogenous material. A significant decrease in the plasma concentrations of testosterone and luteinizing hormone (LH) and the mRNA expression of their receptors in the testes, steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage enzyme, and 3ß-hydroxysteroid dehydrogenase in the NDV-infected group was observed relative to those in the control group (P < 0.05). Collectively, these results indicate that NDV infection induces a severe inflammatory response and histological changes, which decrease the steroidogenesis.


Asunto(s)
Pollos , Enfermedad de Newcastle/complicaciones , Virus de la Enfermedad de Newcastle/fisiología , Enfermedades de las Aves de Corral/virología , Enfermedades Testiculares/veterinaria , Animales , Masculino , Enfermedades de las Aves de Corral/metabolismo , Organismos Libres de Patógenos Específicos , Enfermedades Testiculares/metabolismo , Enfermedades Testiculares/virología , Testículo/patología
5.
Int J Mol Sci ; 21(10)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456258

RESUMEN

Viruses have evolved different strategies to hijack subcellular organelles during their life cycle to produce robust infectious progeny. Successful viral reproduction requires the precise assembly of progeny virions from viral genomes, structural proteins, and membrane components. Such spatial and temporal separation of assembly reactions depends on accurate coordination among intracellular compartmentalization in multiple organelles. Here, we overview the rearrangement and morphology remodeling of virus-triggered intracellular organelles. Focus is given to the quality control of intracellular organelles, the hijacking of the modified organelle membranes by viruses, morphology remodeling for viral replication, and degradation of intracellular organelles by virus-triggered selective autophagy. Understanding the functional reprogram and morphological remodeling in the virus-organelle interplay can provide new insights into the development of broad-spectrum antiviral strategies.


Asunto(s)
Autofagia , Virosis/metabolismo , Animales , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/patología , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Virosis/patología
7.
Vet Res ; 50(1): 37, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118100

RESUMEN

The fusogenically activated F and HN proteins of virulent NDV induce complete autophagic flux in DF-1 and A549 cells. However, the effect of both glycoproteins on mitochondria remains elusive. Here, we found that F and HN cooperation increases mitochondrial biogenesis but does not cause the mitochondria damage. We observed that both glycoproteins change the morphological characteristics and spatial distribution of intracellular mitochondria. F and HN cooperate cooperatively to induce ER stress and UPRmt. Our preliminary data suggested that F and HN cooperatively disturb mitochondrial fusion-fission homeostasis to enhance mitochondrial biogenesis, and eventually meet the energy demand of syncytium formation.


Asunto(s)
Retículo Endoplásmico/virología , Hemaglutininas/metabolismo , Mitocondrias/metabolismo , Neuraminidasa/metabolismo , Enfermedad de Newcastle/metabolismo , Virus de la Enfermedad de Newcastle/metabolismo , Respuesta de Proteína Desplegada , Células A549/metabolismo , Células A549/virología , Animales , Western Blotting , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Mitocondrias/virología
8.
Cell Physiol Biochem ; 47(4): 1655-1666, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29949793

RESUMEN

BACKGROUND/AIMS: Newcastle disease virus (NDV) causes a highly devastating and contagious disease in poultry, which is mainly attributed to extensive tissue damages in the digestive, respiratory and nervous systems. However, nature and dynamics of NDV-induced oxidative stresses in the intestine of chickens remain elusive. METHODS: In this study, we examined the magnitude of intestinal oxidative stress and histopathological changes caused by the virulent NDV infection, and explored the protective roles of vitamin E (vit. E) in ameliorating these pathological changes. For these purposes, chickens were divided into four groups namely i) non supplemented and non-challenged (negative control, CON); ii) no supplementation of vit. E but challenged with ZJ1 (positive control, NS+CHA); iii) vit. E supplementation at the dose of 50 IU/day/Kg body weight and ZJ1 challenge (VE50+CHA); and 4) vit. E supplementation at the dose of 100 IU/day/Kg body weight and ZJ1 challenge (VE100+CHA). In all groups, we analyzed concentrations of glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (T-AOC), and activity of glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) using biochemical methods. The virus loads were determined by quantitative RT-PCR and antibody titers by hemagglutination inhibition assays. We also examined the histopathological changes in the duodenal and jejunal mucosa at 3 and 5-day post infection (dpi) with NDV. RESULTS: A significant elevation in the NO level was observed in NDV challenged chickens compared to the CON chickens at 2 dpi. The MDA contents were significantly increased whereas GSH was significantly decreased in NDV-challenged chickens compared to control. Furthermore, activities of GST, CAT, SOD, as well as the TOAC were markedly decreased in challenged chickens in comparison with control. Virus copy numbers were higher in NDV infected NS+CHA group compared to other groups. Severe histopathological changes including inflammation, degeneration and broken villi were observed in the intestine of NDV challenged chickens. However, all these malfunctions of antioxidant system and pathological changes in the intestine were partially or completely reversed by the vit. E supplementation. CONCLUSIONS: Our results suggest that NDV infection causes oxidative stress and histopathological changes in the duodenum and jejunum of chickens, which can be partially or fully ameliorated by supplementation of vit. E. Additionally, these findings suggest that oxidative stress contributes to the intestinal damages in NDV infected chickens. These findings will help to understand the pathogenesis of NDV and further investigation of therapeutic agents for control of Newcastle disease.


Asunto(s)
Pollos , Duodeno , Yeyuno , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Estrés Oxidativo/efectos de los fármacos , Enfermedades de las Aves de Corral , Vitamina E/farmacología , Animales , Embrión de Pollo , Pollos/metabolismo , Pollos/virología , Duodeno/metabolismo , Duodeno/patología , Duodeno/virología , Yeyuno/metabolismo , Yeyuno/patología , Yeyuno/virología , Enfermedad de Newcastle/metabolismo , Enfermedad de Newcastle/patología , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología
9.
Arch Virol ; 162(9): 2755-2767, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28597087

RESUMEN

Pigeon paramyxovirus type-1 (PPMV-1) is enzootic in pigeons, causing severe economic loss in the poultry industry in many countries. However, the exact epidemic process of PPMV-1 transmission is still unclear. In this study, we analyzed the complete genome of the PPMV-1/SX-01/15 isolate. Sequence results show that the virus genome contains 15,192 nucleotides, with the gene order 3'-NP-P-M-F-HN-L-5'. Phylogenetic analysis revealed that this genome belongs to subgenotype VIc in class II. The mean death time (MDT) and intracerebral pathogenicity index (ICPI) were 62.4 h and 1.13, respectively, indicating that this isolate is a mesogenic PPMV-1 strain. To our knowledge, this is the first report of a subgenotype VIc mesogenic PPMV-1 strain circulating in commercial pigeon flocks in the northwest region of China. In a comparative infection experiment, the morbidity and mortality rates were 100% and 80%, respectively, in 4-week-old pigeons, whereas they were 50% and 30%, respectively, in 5-week-old chickens. Furthermore, this virus caused severe neurological symptoms in a 4-week-old pigeon and mild neurological symptoms in a 5-week-old chicken. A histopathological examination of the brain showed a classical nonsuppurative encephalitis lesion. The pattern of viral shedding, and viral load, and virus distribution differed between infected chickens and pigeons. Genomic characteristics suggest that there was cross-species transmission of PPMV-1 subgenotype VIc in this region at least from the years 2006 to 2015.


Asunto(s)
Pollos , Brotes de Enfermedades/veterinaria , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Filogenia , Enfermedades de las Aves de Corral/virología , Animales , China/epidemiología , Genoma Viral/genética , Especificidad del Huésped , Enfermedad de Newcastle/epidemiología , Enfermedades de las Aves de Corral/epidemiología
10.
Arch Virol ; 162(3): 749-761, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27882444

RESUMEN

Pigeon paramyxovirus type-1(PPMV-1) is an enzootic in pigeon flocks and causes severe economic losses in the poultry industry in many countries. A PPMV-1 isolate, abbreviated as PPMV-1/QL-01/CH/15, was isolated from a great spotted woodpecker in the northwest region of China in 2015. The complete genome was sequenced, and the results showed that the virus genome was 15,192 nt in length, in the gene arrangement 3'-NP-P-M-F-HN-L-5'. Several amino acid mutations were identified in the functional domains of the F and HN proteins. The pathogenicity index of the isolate was evaluated, and the mean death time (MDT) was 72 h and the intracerebral pathogenicity index (ICPI) was 0.925, indicating that this isolate was mesogenic. Sequencing results showed that it had a virulent Newcastle disease virus cleavage motif 112R-R-Q-K-R-F117 at the fusion protein cleavage site. Morbidity and mortality were 70% and 50%, after inoculation of pigeons, whereas this virus was nonpathogenic in chickens. Different immune responses of pigeons and chickens were induced in vivo, which led to different HI serum antibody titers. The results of phylogenetic and evolutionary distance analysis showed that this PPMV-1 strain belonged to sub-genotype VIa in class II. To our knowledge, this is the first identification and analysis of PPMV-1 co-circulation among wild birds and domestic pigeon flocks in China. The data from this study highlight the important role of wild birds in the dissemination of PPMV-1 and provide useful references for improving our understanding of the distribution and evolution of PPMV-1 in China.


Asunto(s)
Animales Salvajes/virología , Enfermedades de las Aves/virología , Columbidae/virología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Animales , Secuencia de Bases , Embrión de Pollo , China , Genoma Viral , Genómica , Genotipo , Datos de Secuencia Molecular , Virus de la Enfermedad de Newcastle/clasificación , Filogenia , Proteínas Virales/genética
11.
Avian Pathol ; 45(4): 408-17, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26950543

RESUMEN

Constant monitoring is performed to elucidate the role of natural hosts in the ecology of Newcastle disease virus (NDV). In this study, an NDV strain isolated from an asymptomatic pigeon was sequenced and analysed. Results showed that the full-length genomes of this isolate were 15,198 nucleotides with the gene order of 3'-NP-P-M-F-HN-L-5'. This NDV isolate was lentogenic, with an intracerebral pathogenicity index of 0.00 and a mean time of death more than 148 h. The isolate possessed a motif of -(112)E-R-Q-E-R-L(117)- at the F protein cleavage site. In addition, 7 and 13 amino acid substitutions were identified in the functional domains of fusion protein (F) and haemagglutinin-neuraminidase protein (HN) proteins, respectively. Analysis of the amino acids of neutralizing epitopes of F and HN proteins showed 3 and 10 amino acid substitutions, respectively, in the isolate. Phylogenetic analysis classified the isolate into genotype Ib in Class I. This isolate shared high homologies with the NDV strains isolated from wild birds and waterfowl in southern and eastern parts of China from 2005 to 2013. To our knowledge, this study is the first to report a NDV strain isolated from pigeon that belongs to genotype Ib in Class I, rather than to the traditional genotype VI or other sub-genotypes in Class II. This study provides information to elucidate the distribution and evolution of Class I viruses for further NDV prevention.


Asunto(s)
Columbidae/virología , Genoma Viral/genética , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Embrión de Pollo , China , Genotipo , Proteína HN/genética , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/patogenicidad , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN/veterinaria , Proteínas Virales/genética
12.
Vet Microbiol ; 294: 110122, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772074

RESUMEN

Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia, including China. Genetic manipulation of the LSDV is essential for the elucidation of the pathogenic mechanism and biological function of the LSDV-encoded protein. In this study, we established a platform for the Cre-loxP recombination system under a modified early-late H5 promoter of the VACV for quick construction of the recombinant LSDV virus. The recombinant virus, LSDV-EGFP-ΔTK, was purified and obtained using serial limited dilution and picking the single cells methods. Using the lentiviral package system, a Cre recombinase enzyme stable expression MDBK cell line was established to supply the Cre recombinase for the reporter gene excision. A genetically stable, safe TK gene-deleted LSDV (LSDV-ΔTK) was constructed using homologous recombination and the Cre-loxP system. It was purified using limited dilution in the MDBK-Cre cell line. Establishing the Cre-loxP recombination system will enable sequential deletion of the interested genes from the LSDV genome and genetic manipulation of the LSDV genome, providing technical support and a platform for developing the attenuated LSDV vaccine.


Asunto(s)
Integrasas , Virus de la Dermatosis Nodular Contagiosa , Recombinación Genética , Integrasas/genética , Animales , Virus de la Dermatosis Nodular Contagiosa/genética , Línea Celular , Recombinación Homóloga , Vectores Genéticos/genética
13.
J Virol Methods ; 326: 114916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479589

RESUMEN

Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in China. Screening suitable cells for LSDV replication is vital for future research on pathogenic mechanisms and vaccine development. Previous comparative studies have identified that the rodent-derived BHK21 is a highly susceptible cell model to LSDV infection. Using western blot, indirect immune-fluorescence assay, flow cytometry, and transmission electron microscopy methods, this study is the first to identify the murine osteoblastic cell line MC3T3-E1 as a novel permissive cell model for LSDV infection. The establishment of MC3T3-E1 as a suitable infectious cell model enhances our understanding of the species range and cell types of the permissive cells and nonpermissive that support LSDV replication. It is helpful to accelerate future research on the pathogenesis, clinical application, and vaccine development of LSDV.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Bovinos , Animales , Ratones , Virus de la Dermatosis Nodular Contagiosa/fisiología , Línea Celular , China
14.
Cells ; 13(6)2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38534383

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-ß and IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was evident by decreased IFN-ß, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3 phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5 and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that HDAC5 acts as a positive modulator of IFN-ß production during viral infection, while FMDV capsid protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to facilitate viral replication.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Interferón Tipo I , Animales , Proteínas de la Cápside/metabolismo , Transducción de Señal , Fiebre Aftosa/metabolismo , Inmunidad Innata , Interferón Tipo I/metabolismo
15.
Front Microbiol ; 14: 1284439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107853

RESUMEN

TMP269, a small molecular inhibitor of IIa histone deacetylase, plays a vital role in cancer therapeutic. However, the effect of TMP269 on the regulation of viral replication has not been studied. In the present study, we found that TMP269 treatment significantly inhibited RABV replication at concentrations without significant cytotoxicity in a dose-dependent manner. In addition, TMP269 can reduce the viral titers and protein levels of RABV at an early stage in the viral life cycle. RNA sequencing data revealed that immune-related pathways and autophagy-related genes were significantly downregulated after RABV infection treated with TMP269. Further exploration shows that autophagy enhances RABV replication in HEK-293T cells, while TMP269 can inhibit autophagy to decrease RABV replication. Together, these results provide a novel treatment strategy for rabies.

16.
Virology ; 585: 127-138, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37336054

RESUMEN

The genomic characterization of emerging pathogens is critical for unraveling their origin and tracking their dissemination. Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia including China. Although the first Lumpy skin disease (LSD) outbreak was reported in 2019, the origin, transmission, and evolutionary trajectory of LSDV in China have remained obscure. The viral genome of a circulating LSDV strain in China, abbreviated LSDV/FJ/CHA/2021, was sequenced using the next-generation sequencing technique. The morphology and cytoplasmic viral factory of these LSDV isolates were observed using transmission electron microscopy. Subsequently, the genomic characterization of this LSDV isolate was systematically analyzed for the first time using the bioinformatics software. The current study revealed that several mutations in the genome of LSDV isolates circulating in China were identified using single nucleotide polymorphisms (SNPs) analysis, an instrument to evaluate for continuous adaptive evaluation of a virus. Furthermore, phylogenomic analysis was used to identify the lineage using the whole genome sequences of 44 LSDV isolates. The result revealed that the isolates from China were closely similar to that of the LSDV isolates from Vietnam, which are divided into a monophyletic lineage sub-group I. The SNPs and Simplot analysis indicate no significant occurrence of the recombinant event on the genome of LSDV isolates in China. Notably, the live virus challenge experiment demonstrated that the pathogenic characterization of this LSDV isolate belongs to a virulent strain. Collectively, we gain the first insight into the evolutionary trajectory, spatiotemporal transmission, and pathogenic characterization of circulating LSDV in China. This study provides a unique reference for risk assessment, guiding diagnostics, and prevention in epizootic and non-epizootic areas.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Virus de la Dermatosis Nodular Contagiosa/genética , Filogenia , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/genética , Secuencia de Bases , Brotes de Enfermedades , China/epidemiología
17.
J Virol Methods ; 317: 114745, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121353

RESUMEN

Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia, including China. Improving the propagation of LSDV is important for diagnostics and vaccine production. Our study identified and compared the LSDV susceptibility of eleven standard cells using western blot, indirect immune-fluorescence assay, quantitative PCR, and 50 % tissue culture infectious dose. Our finding revealed that the LSDV strain could infect five cell lines and show a cytopathic effect. Furthermore, the hTERT-CSF cell line had the highest level of virus in the five cell models, followed by BHK-21, MDBK, Vero, and hTERT-ST. Hence, hTERT-CSF could be used as a candidate cell line for basic and applied research, clinical application, and LSDV vaccine development, providing a vital reference in LSDV and other viruses.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Asia , Línea Celular , China , Virus de la Dermatosis Nodular Contagiosa/genética , Reacción en Cadena de la Polimerasa
18.
Dev Comp Immunol ; 133: 104444, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35588580

RESUMEN

The role of TANK-binding kinase 1 (TBK1) of humans and mice in innate immunity is well elucidated. Still, the molecular characterization and biological function of the TBK1 gene in herbivorous animals are less studied. Here, the open reading frame (ORF) of TBK1 of the cow and goat was firstly cloned and successfully expressed. The Phylogenetic tree analysis reveals that the TBK1 gene of goats and cows is similar to chicken and mute swans, respectively. Some evolutionary distances of the TBK1 gene were still present among different species. A slightly subcellular distribution difference was observed among full-length and truncated TBK1 of goats and cows. Dual-luciferase reporter assay has shown that the full-length TBK1 of goats and cows plays a vital role in the induction of IFN-ß production. The viral infection experiment showed that the over-expression of the full-length TBK1 gene of the cow and goat significantly suppresses intracellular viral replication of the Lumpy skin disease virus (LSDV) in infected cells. Our study showed that TBK1 in the cows and goats is a crucial immunoregulatory for IFN-ß production during viral infection, contributing to a better understanding of innate immunity in the herbivorous animal.


Asunto(s)
Cabras , Virosis , Animales , Bovinos , Inmunidad Innata , Ratones , Filogenia , Proteínas Serina-Treonina Quinasas/genética , Replicación Viral
19.
Animals (Basel) ; 12(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36230299

RESUMEN

Newcastle disease virus (NDV) which is pathogenic to chickens is characterized by dyspnea, diarrhea, nervous disorder and hemorrhages. However, the influence of different virulent NDV strain infection on the host gut microbiota composition is still poorly understood. In this study, twenty 21-day-old specific pathogen free (SFP) chickens were inoculated with either the velogenic Herts33 NDV strain, lentogenic La Sota NDV strain or sterile phosphate buffer solution (PBS). Subsequently, the fecal samples of each group were collected for 16S rRNA sequencing. The results showed that the gut microbiota were mainly dominated by Firmicutes, Bacteroidetes and Proteobacteria in both healthy and NDV infected chickens. NDV infection altered the structure and composition of gut microbiota. As compared to the PBS group, phylum Firmicutes were remarkably reduced, whereas Proteobacteria was significantly increased in the velogenic NDV infected group; the gut community structure had no significant differences between the lentogenic NDV infected group and the PBS group at phylum level. At genus level, Escherichia-Shigella was significantly increased in both the velogenic and lentogenic NDV infected groups, but the lactobacillus was only remarkably decreased in the velogenic NDV infected group. Collectively, different virulent strain NDV infection resulted in a different alteration of the gut microbiota in chickens, including a loss of probiotic bacteria and an expansion of some pathogenic bacteria. These results indicated that NDV strains with different virulence have different impacts on chicken gut microbiota and may provide new insights into the intestinal pathogenesis of NDV.

20.
J Virol Methods ; 309: 114605, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35961484

RESUMEN

The ectopic introduction of the human telomerase reverse transcriptase (hTERT) is an effective way to establish an immortalized cell line. Here, hTERT was obtained by RT-PCR, and the eukaryotic expression plasmid and lentivirus shuttle plasmid of hTERT was successfully constructed by the homologous recombination method. The stable expression of hTERT in fetal cow skin fibroblasts (CSF) was established using the lentivirus package system. The hTERT-CSF proliferate and have immortalized characteristics. Meanwhile, the chromosome analysis identified that the number and structure of the hTERT-CSF genome maintain stable. The indirect immunofluorescence, western blot, and flow cytometry showed that the hTERT gene had been successfully integrated into the primary genome of bovine skin and stably expressed. The viral infection experiment first identifies the hTERT-CSF as a vulnerable cell model responding to the Lumpy skin disease virus (LSDV). Establishing hTERT-CSF provides an important cell model for basic and applied research, clinical application, and vaccine development. It provides an essential reference for the future's rapid establishment of other immortalized cell lines.


Asunto(s)
Telomerasa , Animales , Bovinos , Línea Celular , Expresión Génica Ectópica , Femenino , Fibroblastos , Humanos , Lentivirus/genética , Telomerasa/genética , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA