RESUMEN
Costly data movement in terms of time and energy in traditional von Neumann systems is exacerbated by emerging information technologies related to artificial intelligence. In-memory computing (IMC) architecture aims to address this problem. Although the IMC hardware prototype represented by a memristor is developed rapidly and performs well, the sneak path issue is a critical and unavoidable challenge prevalent in large-scale and high-density crossbar arrays, particularly in three-dimensional (3D) integration. As a perfect solution to the sneak-path issue, a self-rectifying memristor (SRM) is proposed for 3D integration because of its superior integration density. To date, SRMs have performed well in terms of power consumption (aJ level) and scalability (>102 Mbit). Moreover, SRM-configured 3D integration is considered an ideal hardware platform for 3D IMC. This review focuses on the progress in SRMs and their applications in 3D memory, IMC, neuromorphic computing, and hardware security. The advantages, disadvantages, and optimization strategies of SRMs in diverse application scenarios are illustrated. Challenges posed by physical mechanisms, fabrication processes, and peripheral circuits, as well as potential solutions at the device and system levels, are also discussed.
RESUMEN
Memristor-enabled in-memory computing provides an unconventional computing paradigm to surpass the energy efficiency of von Neumann computers. Owing to the limitation of the computing mechanism, while the crossbar structure is desirable for dense computation, the system's energy and area efficiency degrade substantially in performing sparse computation tasks, such as scientific computing. In this work, we report a high-efficiency in-memory sparse computing system based on a self-rectifying memristor array. This system originates from an analog computing mechanism that is motivated by the device's self-rectifying nature, which can achieve an overall performance of ~97 to ~11 TOPS/W for 2- to 8-bit sparse computation when processing practical scientific computing tasks. Compared to previous in-memory computing system, this work provides over 85 times improvement in energy efficiency with an approximately 340 times reduction in hardware overhead. This work can pave the road toward a highly efficient in-memory computing platform for high-performance computing.