RESUMEN
Antimicrobial toxins help prokaryotes win competitive advantages in intraspecific or interspecific conflicts and are also a critical factor affecting the pathogenicity of many pathogens that threaten human health. Although many studies have revealed that antagonism based on antimicrobial toxins plays a central role in prokaryotic life, a database on antimicrobial toxins remains lacking. Here, we present the prokaryotic antimicrobial toxin database (PAT, http://bioinfo.qd.sdu.edu.cn/PAT/), a comprehensive data resource collection on experimentally validated antimicrobial toxins. PAT has organized information, derived from the reported literature, on antimicrobial toxins, as well as the corresponding immunity proteins, delivery mechanisms, toxin activities, structural characteristics, sequences, etc. Moreover, we also predict potential antimicrobial toxins in prokaryotic reference genomes and show the taxonomic information and environmental distribution of typical antimicrobial toxins. These details have been fully incorporated into the PAT database, where users can browse, search, download, analyse and view informative statistics and detailed information. PAT resources have already been used in our prediction and identification of prokaryotic antimicrobial toxins and may contribute to promoting the efficient investigation of antimicrobial toxin functions, the discovery of novel antimicrobial toxins, and an improved understanding of the biological roles and significance of these toxins.
Asunto(s)
Toxinas Biológicas , Humanos , Bases de Datos Factuales , Genoma , Células Procariotas/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismoRESUMEN
The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.
Asunto(s)
Neoplasias de la Mama , Organoides , Medicina de Precisión , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Organoides/efectos de los fármacos , Organoides/patología , Organoides/metabolismo , Medicina de Precisión/métodos , Animales , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Persona de Mediana EdadRESUMEN
BACKGROUND: It is well known that tumor-associated macrophages (TAMs) play essential roles in brain tumor resistance to chemotherapy. However, the detailed mechanisms of how TAMs are involved in brain tumor resistance are still unclear and lack a suitable analysis model. METHODS: A BV2 microglial cells with ALTS1C1 astrocytoma cells in vitro co-culture system was used to mimic the microglia dominating tumor stroma in the tumor invasion microenvironment and explore the interaction between microglia and brain tumor cells. RESULTS: Our result suggested that microglia could form colonies with glioma cells under high-density culturing conditions and protect glioma cells from apoptosis induced by chemotherapeutic drugs. Moreover, this study demonstrates that microglia could hijack drug substances from the glioma cells and reduce the drug intensity of ALTS1C1 via direct contact. Inhibition of gap junction protein prevented microglial-glioma colony formation and microglia-mediated chemoresistance. CONCLUSIONS: This study provides novel insights into how glioma cells acquire chemoresistance via microglia-mediated drug substance transferring, providing a new option for treating chemo-resistant brain tumors.
RESUMEN
Rapid proliferation and metastasis of breast cancer contributed to poor clinical prognosis. Accumulating evidence revealed that the dysregulation of long noncoding RNAs (lncRNAs) was associated with breast cancer progression. However, the role of lncRNA DLG5-AS1 in breast cancer has not been established. Here, we investigated the mechanisms of DLG5-AS1 in the development of breast cancer. We found that the expression of DLG5-AS1 was significantly upregulated in breast cancer tissues and cell lines. DLG5-AS1 interference markedly restrained AU565 cell proliferation, invasion, the expression of apoptosis related (caspase3 and caspase8) and Wnt/ß-catenin pathway related proteins (wnt5a, ß-Catenin and c-Myc), as well as promoted cell apoptosis, whereas DLG5-AS1 overexpression showed an opposite effects. In addition, DLG5-AS1 could directly bind with miR-519 b-3p. We also found that enhancer of zeste homolog 2 (EZH2) is a direct target of miR-519 b-3p, and DLG5-AS1 upregulated EZH2 expression by inhibiting the expression of miR-519 b-3p. EZH2 restrained secreted frizzled related protein 1 (SFRP1) expression through inducing H3 histone methylation in its promoter. MiR-519 b-3p overexpression or SFRP1 knockdown memorably reversed the effects of DLG5-AS1 overexpression on cell functions and Wnt/ß-Catenin pathway related protein expression. Finally, in vivo experiments demonstrated that silencing of DLG5-AS1 inhibited xenograft tumor development in mice. Taken together, these findings demonstrated that DLG5-AS1 facilitated cell proliferation and invasion by promoting EZH2-mediated transcriptional silencing of SFRP1 in breast cancer.
Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Proteínas de la Membrana , Invasividad Neoplásica , ARN Largo no Codificante , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proliferación Celular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Femenino , Línea Celular Tumoral , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Silenciador del Gen , Ratones , Vía de Señalización Wnt/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Desnudos , Apoptosis/genética , Ratones Endogámicos BALB CRESUMEN
Two rare 8-hydroxysteroid glycosides (6-7), and their downstream metabolites (1-5) with an unprecedented 6/6/5/5/5-pentacyclic scaffold, together with seven known analogues (8-14) were isolated from the twigs and leaves of Strophanthus divaricatus. Their structures were fully assigned by analysis of the spectroscopic and ECD data, NMR calculations, X-ray crystallographic study, and chemical methods. In addition, the inhibitory effects of 1-14 on liver and lung cancer cell lines were evaluated, and preliminary structure-activity relationship was discussed. Data-independent acquisition (DIA)-based quantitative proteomic analysis and biological verification of H1299 cells suggested that this family of compounds may play an anticancer role by suppressing both DNA damage response (DDR) and mTOR/S6K signaling pathways.
Asunto(s)
Daño del ADN , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glicósidos , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Relación Estructura-Actividad , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Daño del ADN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Esteroides/química , Esteroides/farmacología , Esteroides/aislamiento & purificación , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/químicaRESUMEN
The gut-brain axis plays a vital role in Parkinson's disease (PD). The mechanisms of gut-brain transmission mainly focus on α-synuclein deposition, intestinal inflammation and microbiota function. A few studies have shown the trigger of PD pathology in the gut. α-Synuclein is highly conserved in food products, which was able to form ß-folded aggregates and to infect the intestinal mucosa. In this study we investigated whether α-synuclein-preformed fibril (PFF) exposure could modulate the intestinal environment and induce rodent models replicating PD pathology. We first showed that PFF could be internalized into co-cultured Caco-2/HT29/Raji b cells in vitro. Furthermore, we demonstrated that PFF perfusion caused the intestinal inflammation and activation of enteric glial cells in an ex vivo intestinal organ culture and in an in vivo intestinal mouse coloclysis model. Moreover, we found that PFF exposure through regular coloclysis induced PD pathology in wild-type (WT) and A53T α-synuclein transgenic mice with various phenotypes. Particularly in A53T mice, PFF induced significant behavioral disorders, intestinal inflammation, α-synuclein deposition, microbiota dysbiosis, glial activation as well as degeneration of dopaminergic neurons in the substantia nigra. In WT mice, however, the PFF induced only mild behavioral abnormalities, intestinal inflammation, α-synuclein deposition, and glial activation, without significant changes in microbiota and dopaminergic neurons. Our results reveal the possibility of α-synuclein aggregates binding to the intestinal mucosa and modeling PD in mice. This study may shed light on the investigation and early intervention of the gut-origin hypothesis in neurodegenerative diseases.
Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Ratones , Animales , alfa-Sinucleína/metabolismo , Células CACO-2 , Trastornos Parkinsonianos/metabolismo , Enfermedad de Parkinson/metabolismo , Ratones Transgénicos , Neuronas Dopaminérgicas/metabolismo , Inflamación/metabolismoRESUMEN
BACKGROUND: The goal of the study was to provide an individual and precise genetic and molecular biological basis for the early prevention, diagnosis, and treatment of local FH by analyzing the risk factors for the development of FH in Han and Mongolian patients in the Hulunbuir, comparing the lipid levels of FH patients of the two ethnicities, and assessing differences in mutations to two genes between the two ethnic groups. METHODS: Twenty cases each of Han Chinese and Mongolian healthy controls and fifty patients who each met the inclusion criteria from November 2021 to December 2022 in five general hospitals in Hulunbuir were selected. Multifactor logistic analysis was used to analyze the risk factors associated with the development of FH. We used t-tests to analyze statistical differences in lipid levels between the groups, and Sanger sequencing to detect the dis-tribution of common mutation sites of PCSK9 and APOB in all study subjects. The mutation rates and differences between regions and ethnic groups were summarized and compared. RESULTS: 1) Gender, age, alcohol consumption, dietary status, and a family history of FH were risk factors associated with the development of FH. 2) TC, LDL-C, and APOB were significantly higher in Mongolian cases than Han cases (p < 0.05). sdLDL-C was not statistically different between the two ethnicities (p > 0.05). 3) We detected four (8%) heterozygous mutations at the PCSK9 gene E670G mutation site in the Han case group and a total of nine (18%) mutations at this site in the Mongolian cases, including one (2%) homozygous and eight (16%) heterozygous mutations. One case of a heterozygous mutation was detected in the Mongolian control group. We detected a total of ten (20%) mutations at the APOB gene rs1367117 mutation site in the Han case group, including eight (16%) heterozygous and two (4%) homozygous mutations, 11 cases (22%) of heterozygous mutations in the Mongolian case group, two cases of heterozygous mutations in the Han control group, and one case of a heterozygous mutation in the Mongolian control group. 4) The D374Y and S127R mutation sites of PCSK9 and the R3500Q mutation site of APOB were not detected in any of the study subjects. CONCLUSIONS: The mutation sites of the PCSK9 and APOB genes in FH patients in Hulunbuir are different from other regions, and the mutation rate is higher than in other regions. Therefore, we recommend that the mutation sites of the PCSK9 and APOB genes described herein be used as clinical detection indicators to assist the diagnosis of FH in this region.
Asunto(s)
Apolipoproteínas B , Pueblos del Este de Asia , Hiperlipoproteinemia Tipo II , Proproteína Convertasa 9 , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteína B-100/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , China/epidemiología , LDL-Colesterol/sangre , Etnicidad/genética , Predisposición Genética a la Enfermedad , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/etnología , Hiperlipoproteinemia Tipo II/diagnóstico , Mongolia/epidemiología , Mongolia/etnología , Mutación , Proproteína Convertasa 9/genética , Factores de Riesgo , Pueblos del Este de Asia/etnología , Pueblos del Este de Asia/genética , Apolipoproteínas B/genéticaRESUMEN
Metamaterial filters represent an essential method for researching the miniaturization of infrared spectral detectors. To realize an 8-2 µm long-wave infrared tunable transmission spectral structure, an extraordinary optical transmission metamaterial model was designed based on the grating diffraction effect and surface plasmon polariton resonance theory. The model consisted of an Al grating array in the upper layer and a Ge substrate in the lower layer. We numerically simulated the effects of different structural parameters on the transmission spectra, such as grating height (h), grating width (w), grating distance (d), grating constant (p), and grating length (S 1), by utilizing the finite-difference time-domain method. Finally, we obtained the maximum transmittance of 81.52% in the 8-12 µm band range, with the corresponding structural parameters set to h=50n m, w=300n m, d=300n m, and S 1=48µm, respectively. After Lorentz fitting, a full width at half maximum of 0.94±0.01µm was achieved. In addition, the Ge substrate influence was taken into account for analyzing the model's extraordinary optical transmission performance. In particular, we first realized the continuous tuning performance at the transmission center wavelength (8-12 µm) of long-wave infrared within the substrate tuning thickness (D) range of 1.9-2.9 µm. The structure designed in this paper features tunability, broad spectral bandwidth, and miniaturization, which will provide a reference for the development of miniaturized long-wave infrared spectral filter devices.
RESUMEN
BACKGROUND: Anxiety disorders can cause serious physical and psychological damage, so many anxiety scales have been developed internationally to measure anxiety disorders, but due to the cultural differences and cultural dependence of quality of life between Chinese and Western cultures, it is difficult to reflect the main characteristics of Chinese patients. Therefore, we developed a scale suitable for Chinese patients with anxiety disorders: the Anxiety Disorders Scale of the Quality of Life Instruments for Chronic Diseases (QLICD-AD), hoping to achieve satisfactory QOL assessments for anxiety disorders. OBJECTIVES: Items from the Anxiety Disorders Scale of the Quality of Life in Chronic Disease Instrument QLICD-AD system were analyzed using CTT and IRT to lay the groundwork for further refinement of the scale to accurately measure anxiety disorders. METHODS: 120 patients with anxiety disorder were assessed using the QLICD-AD (V2.0). Descriptive statistics, variability method, correlation coefficient method, factor analysis and Cronbach's coefficient of CTT, and graded response model (GRM) of item response theory were used to analyze the items of the scale. RESULT: CTT analysis showed that the standard deviation of each item was between 0.928 and 1.466; Pearson correlation coefficients of item-to-domain were generally greater than 0.5 and also greater than that of item-to-other domain; the Cronbach 's of the total scale was 0.931, α of each domain was between 0.706 and 0.865. IRT analysis showed that the discrimination was between 1.14 and 1.44. The difficulty parameter of all items increased with the increase of grade. But some items (GPH6,GPH8,GPS3,GSO2-GSO4,AD2,AD5) difficulty parameters were less than 4 or greater than 4. The average of information amount was between 0.022 and 0.910. CONCLUSION: Based on CTT and IRT analysis, most items of the QLICD-AD (V2.0) scale have good performance and good differentiation, but a few items still need further revision. Suggests that the QLICD-AD (V2.0) appears to be a valid measure of anxiety disorders. It may effectively improve the diagnosticity of anxiety disorders, but due to the limitations of the current sample, further validation is needed in a broader population extrapolation trial.
RESUMEN
BACKGROUND: Children with unilateral cerebral palsy (UCP) are encouraged to participate in the regular school curriculum. However, even when using the less-affected hand for handwriting, children with UCP still experience handwriting difficulties. Visual-motor integration (VMI) is a predictor of handwriting quality. Investigating VMI in children with UCP is important but still lacking. Conventional paper-based VMI assessments is subjective and use all-or-nothing scoring procedures, which may compromise the fidelity of VMI assessments. Moreover, identifying important shapes that are predictive of VMI performance might benefit clinical decision-making because different geometric shapes represent different developmental stepping stones of VMI. Therefore, a new computer-aided measure of VMI (the CAM-VMI) was developed to investigate VMI performance in children with UCP and to identify shapes important for predicting their VMI performance. METHODS: Twenty-eight children with UCP and 28 typically-developing (TD) children were recruited. All participants were instructed to complete the CAM-VMI and Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery-VMI). The test items of the CAM-VMI consisted of nine simple geometric shapes related to writing readiness. Two scores of the CAM-VMI, namely, Error and Effort, were obtained by image registration technique. The performances on the Beery-VMI and the CAM-VMI of children with UCP and TD children were compared by independent t-test. A series of stepwise regression analyses were used to identify shapes important for predicting VMI performance in children with UCP. RESULTS: Significant group differences were found in both the CAM-VMI and the Beery-VMI results. Furthermore, Error was identified as a significant aspect for predicting VMI performance in children with UCP. Specifically, the square item was the only significant predictor of VMI performance in children with UCP. CONCLUSIONS: This study was a large-scale study that provided direct evidence of impaired VMI in school-aged children with UCP. Even when using the less-affected hand, children with UCP could not copy the geometric shapes as well as TD children did. The copied products of children with UCP demonstrated poor constructional accuracy and inappropriate alignment. Furthermore, the predictive model suggested that the constructional accuracy of a copied square is an important predictor of VMI performance in children with UCP.
Asunto(s)
Parálisis Cerebral , Desarrollo Infantil , Niño , Humanos , Desempeño Psicomotor , Computadores , ManoRESUMEN
BACKGROUND: Visceral adipose tissue (VAT) has been linked to the severe acute pancreatitis (SAP) prognosis, although the underlying mechanism remains unclear. It has been reported that pyroptosis worsens SAP. The present study aimed to verify whether mesenteric adipose tissue (MAT, a component of VAT) can cause secondary intestinal injury through the pyroptotic pathway. METHODS: Thirty-six male Sprague Dawley (SD) rats were divided into six different groups. Twelve rats were randomly divided into the SAP and control groups. We monitored the changes of MAT and B lymphocytes infiltration in MAT of SAP rats. Twelve SAP rats were injected with MAT B lymphocytes or phosphate buffer solution (PBS). The remaining twelve SAP rats were first injected with MAT B lymphocytes, and then with MCC950 (NLRP3 inhibitor) or PBS. We collected blood and tissue samples from pancreas, gut and MAT for analysis. RESULTS: Compared to the control rats, the SAP group showed inflammation in MAT, including higher expression of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6), lower expression of IL-10, and histological changes. Flow cytometry analysis revealed B lymphocytes infiltration in MAT but not T lymphocytes and macrophages. The SAP rats also exhibited intestinal injury, characterized by lower expression of zonula occludens-1 (ZO-1) and occludin, higher levels of lipopolysaccharide and diamine oxidase, and pathological changes. The expression of NLRP3 and n-GSDMD, which are responsible for pyroptosis, was increased in the intestine of SAP rats. The injection of MAT B lymphocytes into SAP rats exacerbated the inflammation in MAT. The upregulation of pyroptosis reduced tight junction in the intestine, which contributed to the SAP progression, including higher inflammatory indicators and worse histological changes. The administration of MCC950 to SAP + MAT B rats downregulated pyroptosis, which subsequently improved the intestinal barrier and ameliorated inflammatory response of SAP. CONCLUSIONS: In SAP, MAT B lymphocytes aggravated local inflammation, and promoted the injury to the intestine through the enteric pyroptotic pathway.
Asunto(s)
Pancreatitis , Ratas , Masculino , Animales , Pancreatitis/inducido químicamente , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley , Mucosa Intestinal , Piroptosis , Enfermedad Aguda , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Linfocitos B/metabolismo , Linfocitos B/patologíaRESUMEN
The rapid and precise monitoring of peripheral blood miRNA levels holds paramount importance for disease diagnosis and treatment monitoring. In this study, we propose an innovative research strategy that combines the catalytic hairpin assembly reaction with SERS signal congregation and enhancement. This combination can significantly enhance the stability of SERS detection, enabling stable and efficient detection of miRNA. Specifically, our paper-based SERS detection platform incorporates a streptavidin-modified substrate, biotin-labeled catalytic hairpin assembly reaction probes, 4-ATP, and primer-co-modified gold nanoparticles. In the presence of miRNA, the 4-ATP and primer-co-modified gold nanoparticles can specifically recognize the miRNA and interact with the biotin-labeled CHA probes to initiate an interfacial catalytic hairpin assembly reaction. This enzyme-free high-efficiency catalytic process can accumulate a large amount of biotin on the gold nanoparticles, which then bind to the streptavidin on the substrate with the assistance of the driving liquid, forming red gold nanoparticle stripes. These provide a multitude of hotspots for SERS, enabling enhanced signal detection. This innovative design achieves a low detection limit of 3.47 fM while maintaining excellent stability and repeatability. This conceptually innovative detection platform offers new technological possibilities and solutions for clinical miRNA detection.
Asunto(s)
Biotina , Oro , Límite de Detección , Nanopartículas del Metal , MicroARNs , Espectrometría Raman , MicroARNs/sangre , MicroARNs/análisis , Nanopartículas del Metal/química , Oro/química , Espectrometría Raman/métodos , Biotina/química , Humanos , Catálisis , Estreptavidina/químicaRESUMEN
This study aims to explore the associations and the underlying mechanism among dry eye disease (DED), air pollution, and meteorological conditions. DED is positively correlated with air pollutants (i.e., PM2.5, PM10, O3, NO2, CO, and SO2) and meteorological conditions (i.e., high altitude and wind speed), while negatively associated with relative humidity. Both low and high air temperatures effect DED. Atmospheric pollutants affect DED mainly through necroptosis or autophagy, inflammatory responses, and oxidative stress. Meteorological factors affect DED not only by their own affects but also by dispersing the concentration of air pollutants, and then reducing the negative exposure. In summary, this review may expand the understanding of the effects of air pollution and meteorological factors on DED and emphasize the importance of air environmental protection.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Síndromes de Ojo Seco , Humanos , Contaminación del Aire/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Síndromes de Ojo Seco/etiología , Conceptos Meteorológicos , Exposición a Riesgos Ambientales/efectos adversos , Estrés Oxidativo , Factores de Riesgo , Humedad , Material Particulado/efectos adversos , Tiempo (Meteorología)RESUMEN
Studies of the intracranial vasculature in patients with ischemic stroke caused by atherosclerosis (AS) and cardiac embolism have revealed significantly different degrees of AS, plaque, and vascular stenosis. And the endothelium has a great influence on the vasculature throughout the circulatory system, especially in the brain. This study aimed to investigate the mechanistic differences in endothelial injury between atrial fibrillation (AF)- and AS-induced ischemic stroke. All target genes of AF, AS, and the vascular endothelial cell (VC) were obtained from the GeneCards database; the differential genes of AF and AS separately associated with the VC were established by a Venn diagram. A protein-protein interaction network was created, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to perform genomic enrichment and functional enrichment analysis. Hub genes were selected by Maximal Clique Centrality algorithm ranking and correlation linkage in the STRING database, and then, clinical serum samples were used to verify the quantitative expressions in the AF, AF stroke, AS, and AS stroke groups. Fifty-five AF-VC-related genes and ninety-three AS-VC-related genes were screened, which differed in biological function, cellular composition, and molecular function. The genes correlation between AF and vascular endothelial cells (VCs) was KRAS and PTPN11, and those correlation between AS and VCs was IL-4, IFNG, IL-17A, and CSF-2. IL-4 and CSF-2 may be relevant proteins involved in the differences in stroke mechanisms between AF and AS, and they may act by further influencing the function of their downstream cells. This study provides a preliminary theoretical basis for investigating the differences in mechanisms of endothelial injury between AF- and AS-induced ischemic stroke.
Asunto(s)
Aterosclerosis , Fibrilación Atrial , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Fibrilación Atrial/genética , Fibrilación Atrial/complicaciones , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Isquemia Encefálica/genética , Isquemia Encefálica/complicaciones , Células Endoteliales , Interleucina-4 , Factores de Riesgo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/complicaciones , Aterosclerosis/genética , Aterosclerosis/complicaciones , Biología Computacional , EndotelioRESUMEN
Multiple cancers have been reported to be associated with angiogenesis and are sensitive to anti-angiogenic therapies. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. However, the underlying anticancer mechanisms of antiangiogenic drugs are still unknown. Metformin (MET) and simvastatin (SVA), two metabolic-related drugs, have been shown to play important roles in modulating the hypoxic tumor microenvironment and angiogenesis. Whether the combination of MET and SVA could exert a more effective antitumor effect than individual treatments has not been examined. The antitumor effect of the synergism of SVA and MET was detected in mouse models, breast cancer patient-derived organoids, and multiple tumor cell lines compared with untreated, SVA, or MET alone. RNA sequencing revealed that the combination of MET and SVA (but not MET or SVA alone) inhibited the expression of endothelin 1 (ET-1), an important regulator of angiogenesis and the hypoxia-related pathway. We demonstrate that the MET and SVA combination showed synergistic effects on inhibiting tumor cell proliferation, promoting apoptosis, alleviating hypoxia, decreasing angiogenesis, and increasing vessel normalization compared with the use of a single agent alone. The MET and SVA combination suppressed ET-1-induced hypoxia-inducible factor 1α expression by increasing prolyl hydroxylase 2 (PHD2) expression. Furthermore, the MET and SVA combination showed a more potent anticancer effect compared with bosentan. Together, our findings suggest the potential application of the MET and SVA combination in antitumor therapy.
Asunto(s)
Metformina , Neoplasias , Animales , Ratones , Simvastatina/farmacología , Simvastatina/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Endotelina-1/metabolismo , Endotelina-1/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Línea Celular Tumoral , Hipoxia/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por HipoxiaRESUMEN
Immune checkpoint blockade therapy targeting programmed cell death protein 1 (PD-1) has revolutionized the landscape of multiple human cancer types, including head and neck squamous carcinoma (HNSCC). Programmed death ligand-2 (PD-L2), a PD-1 ligand, mediates cancer cell immune escape (or tolerance independent of PD-L1) and predicts poor prognosis of patients with HNSCC. Therefore, an in-depth understanding of the regulatory process of PD-L2 expression may stratify patients with HNSCC to benefit from anti-PD-1 immunotherapy. In this review, we summarised the PD-L2 expression and its immune-dependent and independent functions in HNSCC and other solid tumours. We focused on recent findings on the mechanisms that regulate PD-L2 at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels, also in intercellular communication of tumour microenvironment (TME). We also discussed the prospects of using small molecular agents indirectly targeting PD-L2 in cancer therapy. These findings may provide a notable avenue in developing novel and effective PD-L2-targeted therapeutic strategies for immune combination therapy and uncovering biomarkers that improve the clinical efficacy of anti-PD-1 therapies.
Asunto(s)
Neoplasias de Cabeza y Cuello , Inmunoterapia , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Ligandos , Terapia Combinada , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Microambiente TumoralRESUMEN
BACKGROUND & AIMS: Rapid deconditioning, also called cachexia, and metabolic reprogramming are two hallmarks of pancreatic cancer. Acetyl-coenzyme A synthetase short-chain family member 2 (ACSS2) is an acetyl-enzyme A synthetase that contributes to lipid synthesis and epigenetic reprogramming. However, the role of ACSS2 on the nonselective macropinocytosis and cancer cachexia in pancreatic cancer remains elusive. In this study, we demonstrate that ACSS2 potentiates macropinocytosis and muscle wasting through metabolic reprogramming in pancreatic cancer. METHODS: Clinical significance of ACSS2 was analyzed using samples from patients with pancreatic cancer. ACSS2-knockout cells were established using the clustered regularly interspaced short palindromic repeats-associated protein 9 system. Single-cell RNA sequencing data from genetically engineered mouse models was analyzed. The macropinocytotic index was evaluated by dextran uptake assay. Chromatin immunoprecipitation assay was performed to validate transcriptional activation. ACSS2-mediated tumor progression and muscle wasting were examined in orthotopic xenograft models. RESULTS: Metabolic stress induced ACSS2 expression, which is associated with worse prognosis in pancreatic cancer. ACSS2 knockout significantly suppressed cell proliferation in 2-dimensional and 3-dimensional models. Macropinocytosis-associated genes are upregulated in tumor tissues and are correlated with worse prognosis. ACSS2 knockout inhibited macropinocytosis. We identified Zrt- and Irt-like protein 4 (ZIP4) as a downstream target of ACSS2, and knockdown of ZIP4 reversed ACSS2-induced macropinocytosis. ACSS2 upregulated ZIP4 through ETV4-mediated transcriptional activation. ZIP4 induces macropinocytosis through cyclic adenosine monophosphate response element-binding protein-activated syndecan 1 (SDC1) and dynamin 2 (DNM2). Meanwhile, ZIP4 drives muscle wasting and cachexia via glycogen synthase kinase-ß (GSK3ß)-mediated secretion of tumor necrosis factor superfamily member 10 (TRAIL or TNFSF10). ACSS2 knockout attenuated muscle wasting and extended survival in orthotopic mouse models. CONCLUSIONS: ACSS2-mediated metabolic reprogramming activates the ZIP4 pathway, and promotes macropinocytosis via SDC1/DNM2 and drives muscle wasting through the GSK3ß/TRAIL axis, which potentially provides additional nutrients for macropinocytosis in pancreatic cancer.
Asunto(s)
Acetato CoA Ligasa , Caquexia , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Adenosina Monofosfato , Caquexia/genética , Línea Celular Tumoral , Dextranos , Dinamina II , Glucógeno Sintasa Quinasa 3 beta , Lípidos , Músculos/metabolismo , Músculos/patología , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Sindecano-1 , Factores de Necrosis Tumoral , Neoplasias PancreáticasRESUMEN
BACKGROUND: Acral melanoma (AM) is the most common subtype in Chinese melanoma patients with a very poor prognosis. However, our understanding of the disease pathogenesis and molecular landscape is limited by the few studies that have been conducted. Here, we profiled the clinical characteristics, mutational landscapes and tumor immune microenvironment of AM patients to gain insights into disease characteristics and potential treatment strategies. METHODS: A total of 90 AM patients were enrolled and their tissue samples were subjected to next-generation sequencing and multiplexed immunohistochemistry tests. Kaplan-Meier curves and log-rank tests were used to analyze the prognostic potential of various genetic aberrations and immune cell compositions in AM. RESULTS: The median disease-free survival was 21.3 months and estimated median overall survival (OS) was 60 months. More advanced stages, older ages and thickness of greater than 4 mm were associated with worse prognosis in AM patients (HR = 2.57, 95% CI 1.25-5.29, p = 0.01; HR = 2.77, 95% CI 1.22-6.28, p = 0.02; HR = 3.43, 95% CI 1.51-7.82, p < 0.01, respectively), while patients who received post-surgical treatments had better survival (HR = 0.36, 95% CI 0.17-0.76, p = 0.01). The most frequently altered genes included BRAF (14.5%), KIT (16.9%), NRAS (12%), NF1 (10.8%), APC (7.2%), and ARID2 (6%). Copy number variations (CNV) were commonly found in CCND1 (19.3%), CDK4 (19.3%), MDM2 (14.5%) and FGF19 (12%). CDK4 amplifications was independently associated with shorter OS in AM patients (HR = 3.61, 95% CI 1.38-9.46, p = 0.01). CD8 + T cells (p < 0.001) and M1 macrophages (p = 0.05) were more highly enriched in the invasive margin than in the tumor center. Patients with higher levels of M1 macrophage infiltration in the invasive margin derived markedly longer OS (HR = 0.43, 95% CI 0.20-0.95, p = 0.03). Interestingly, in CDK4-amplified patients, there tended to be a low level of M1 macrophage infiltration in the invasive margin (p = 0.06), which likely explains the poor prognosis in such patients. CONCLUSIONS: Our study provided a comprehensive portrait of the clinicopathological features, genetic aberrations and tumor microenvironment profiles in AM patients and identified candidate prognostic factors, which may facilitate development of additional therapeutic options and better inform clinical management of AM patients. Based on these prognostic factors, further studies should focus on enhancing the infiltration of M1 macrophages, especially in CDK4-amplified AM patients.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Pronóstico , Variaciones en el Número de Copia de ADN/genética , Microambiente Tumoral/genética , Melanoma/patología , Neoplasias Cutáneas/genética , Melanoma Cutáneo MalignoRESUMEN
Ultrathin broadband absorber maintaining a near-uniform low reflectivity over a broadband wavelength is essential for many optical applications, such as light harvesting and nanoscale imaging. Recently, there has been considerable interest in employing arrays of high-index dielectric Mie resonators on surfaces to trap light and reduce the reflectivity. For such Mie-resonant metasurfaces, however, antireflection properties featuring both a flat low reflectance curve and a wide bandwidth are hard to be satisfied simultaneously, and an efficient large-scale nanofabrication technique rarely exists. Here, we present a high-throughput laser interference induced quasi-random patterning (LIIQP) technique to fabricate quasi-random Mie resonators in large scale. Mie resonators with feature sizes down to sub-100â nm have been fabricated using a 1064â nm laser source. Each Mie resonator concentrates light at its shape-dependent resonant frequency, and all such resonators are arranged quasi-randomly to provide both rich (with broadband Fourier components) and strong (with large intensities) Fourier spectra. Specifically, a near-uniform broadband reflectivity over 400-1100â nm spectrum region has been confined below 3% by fabricating a large-scale ultrathin (around 400â nm) absorber. Our concept and high-throughput fabrication technique allows the rapid production of quasi-random dielectric Mie-resonant metasurfaces in a controllable way, which can be used in various promising applications including thin-film solar cells, display, and imaging.
RESUMEN
Silver nanowires (AgNWs) have gained significant attention from researchers as a promising material for producing flexible transparent conductive films, which can be utilized in touch and display screens. Thereinto, the ultrahigh aspect ratio AgNW network can theoretically decrease the contact resistance effectively while still retaining considerable mechanical and optical properties. However, fabrication of high-quality AgNWs with a fine diameter and high aspect ratio is still challenging. Herein, a simple and robust approach to synthesize ultrahigh aspect ratio AgNWs is presented. This study successfully fabricated AgNWs with the highest aspect ratio up to â¼4000 and an average length of â¼72 µm by utilizing tetrabutylammonium tribromide as an auxiliary additive. The manifestation of tetrabutylammonium tribromide was proven to be beneficial for the generation of silver seeds and the expansion of AgNWs. The obtained AgNWs were utilized to create a transparent conductive film that showed low sheet resistance of 22.4 Ω/sq and high transmittance and low haze of 87.71 and 4.15%, respectively. The transmittance and haze of the vacant poly(ethylene terephthalate) support were 90.13 and 2.05%, thereby offering great potential for application in flexible transparent electrodes.