Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17091, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273482

RESUMEN

Drylands are important carbon pools and are highly vulnerable to climate change, particularly in the context of increasing aridity. However, there has been limited research on the effects of aridification on soil total carbon including soil organic carbon and soil inorganic carbon, which hinders comprehensive understanding and projection of soil carbon dynamics in drylands. To determine the response of soil total carbon to aridification, and to understand how aridification drives soil total carbon variation along the aridity gradient through different ecosystem attributes, we measured soil organic carbon, inorganic carbon and total carbon across a ~4000 km aridity gradient in the drylands of northern China. Distribution patterns of organic carbon, inorganic carbon, and total carbon at different sites along the aridity gradient were analyzed. Results showed that soil organic carbon and inorganic carbon had a complementary relationship, that is, an increase in soil inorganic carbon positively compensated for the decrease in organic carbon in semiarid to hyperarid regions. Soil total carbon exhibited a nonlinear change with increasing aridity, and the effect of aridity on total carbon shifted from negative to positive at an aridity level of 0.71. In less arid regions, aridification leads to a decrease in total carbon, mainly through a decrease in organic carbon, whereas in more arid regions, aridification promotes an increase in inorganic carbon and thus an increase in total carbon. Our study highlights the importance of soil inorganic carbon to total carbon and the different effects of aridity on soil carbon pools in drylands. Soil total carbon needs to be considered when developing measures to conserve the terrestrial carbon sink.


Asunto(s)
Ecosistema , Suelo , Carbono/análisis , Clima Desértico , China
2.
J Environ Manage ; 343: 118186, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224686

RESUMEN

Driven by the goal of reversing desertification and recovering degraded lands, a wide range of vegetation restoration practices (such as planting and fencing) have been implemented in China's drylands. It is essential to examine the effects of vegetation restoration and environmental factors on soil nutrients to optimize restoration approaches. However, quantitative evaluation on this topic is insufficient due to a lack of long-term field monitoring data. This study evaluated the effects of sandy steppe restoration and sand dune fixation in the semi-arid desert, and natural and artificial vegetation restoration in the arid desert. It considered soil and plant characteristics using long-term (2005-2015) data from the Naiman Research Station located in the semi-arid region and Shapotou Research Station in the arid region of China's drylands. Results showed the sandy steppe had higher soil nutrient contents, vegetation biomass and rate of accumulating soil organic matter (OM) than the fixed dunes and moving dunes. Soil nutrient contents and vegetation biomass of the natural vegetation of Artemisia ordosica were higher than those of the artificial restoration of Artemisia ordosica since 1956. Artificial restoration had a higher rate of accumulating soil OM, total nitrogen (TN) and grass litter biomass than natural restoration. Soil water indirectly affected soil OM by affecting vegetation. Grass diversity was the main influencing factor on soil OM variance in the semi-arid Naiman desert while shrub diversity was the main factor in the arid Shapotou desert. These findings indicate that sand fixation in the semi-arid desert and vegetation restoration in the arid desert bring benefits for soil nutrient accumulation and vegetation improvement, and that natural restoration is preferable to artificial restoration. Results can be used to formulate sustainable vegetation restoration strategies, such as encouraging natural restoration, considering local resource constraints, and giving priority to restoring shrubs in arid areas with limited water.


Asunto(s)
Ecosistema , Suelo , Arena , Poaceae , China , Clima Desértico , Agua
3.
Sci Total Environ ; 877: 162946, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948320

RESUMEN

Dryland soils are nutrient-poor and prone to degradation due to aridity, grazing and enclosure. It is essential to examine the effects of grazing and enclosure on aridity-induced soil degradation in dryland ecosystems to optimize land management practices in response to climate change. However, quantitative evaluation on this topic is scarce due to a lack of long-term field monitoring data. This study evaluated the combined effects of aridity and grazing/enclosure using long-term data (2005-2015) from three research stations on soil physical and chemical properties in typical steppes and desert steppes across the semi-arid and hyper-arid areas of China's drylands. Results showed that soil organic matter (OM) content was higher for enclosures (20.50 g/kg) than for grazing (19.06 g/kg). In the semi-arid steppe, enclosures aged 30-33 years had the highest soil total nitrogen (TN) content (1.21 g/kg). Longer enclosures aged 34-36 years showed decreased soil TN content (0.88 g/kg). In the desert steppe, enclosures aged 5-8 years exhibited the highest soil OM (2.44 g/kg) and TN (0.21 g/kg) contents. Grazing enhanced the decrease of OM content (from 4.57 to 2.39 g/kg) with increasing aridity (1 - aridity index) from 0.35 to 1. These findings indicate that enclosures can improve soil fertility, but prolonged enclosures may have negative effects. Grazing had a synergistic effect on the decrease of OM with aridity. Results can be used in response to climate changes to formulate sustainable land management strategies, such as reducing the enclosure period in wetter and restored areas, and diminishing the grazing intensity in areas with higher aridity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA