Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 63(1): 35-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26224662

RESUMEN

UNLABELLED: Chronic hepatitis B and D infections are major causes of liver disease and hepatocellular carcinoma worldwide. Efficient therapeutic approaches for cure are absent. Sharing the same envelope proteins, hepatitis B virus and hepatitis delta virus use the sodium/taurocholate cotransporting polypeptide (a bile acid transporter) as a receptor to enter hepatocytes. However, the detailed mechanisms of the viral entry process are still poorly understood. Here, we established a high-throughput infectious cell culture model enabling functional genomics of hepatitis delta virus entry and infection. Using a targeted RNA interference entry screen, we identified glypican 5 as a common host cell entry factor for hepatitis B and delta viruses. CONCLUSION: These findings advance our understanding of virus cell entry and open new avenues for curative therapies. As glypicans have been shown to play a role in the control of cell division and growth regulation, virus-glypican 5 interactions may also play a role in the pathogenesis of virus-induced liver disease and cancer.


Asunto(s)
Glipicanos/fisiología , Virus de la Hepatitis B/patogenicidad , Virus de la Hepatitis Delta/patogenicidad , ARN no Traducido/fisiología , Internalización del Virus , Células Cultivadas , Humanos
2.
Sci Rep ; 5: 13344, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26323588

RESUMEN

Cellular translation is down-regulated by host antiviral responses. Picornaviridae and Flaviviridae including hepatitis C virus (HCV) evade this process using internal ribosomal entry sequences (IRESs). Although HCV IRES translation is a prerequisite for HCV replication, only few host factors critical for IRES activity are known and the global regulator network remains largely unknown. Since signal transduction is an import regulator of viral infections and the host antiviral response we combined a functional RNAi screen targeting the human signaling network with a HCV IRES-specific reporter mRNA assay. We demonstrate that the HCV host cell cofactors PI4K and MKNK1 are positive regulators of HCV IRES translation representing a novel pathway with a functional relevance for the HCV life cycle and IRES-mediated translation of viral RNA.


Asunto(s)
Hepacivirus/genética , Sitios Internos de Entrada al Ribosoma/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular , Supervivencia Celular , Genes Reporteros , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Antígenos de Histocompatibilidad Menor , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Viral/genética
3.
Mol Oncol ; 7(3): 567-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23415752

RESUMEN

Mutations in BRCA1/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1/2 deleterious mutations 1/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective pressure against BRCA1/2 in cell culture similar to the selective pressure seen in the clinic after treatment with chemotherapy. PARP inhibitors may be useful in patients with BRCA1 deleterious mutations or gene methylation.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Mutación , Neoplasias Ováricas/genética , Antineoplásicos/farmacología , Secuencia de Bases , Línea Celular Tumoral , Metilación de ADN , Análisis Mutacional de ADN , Resistencia a Antineoplásicos , Femenino , Humanos , Pérdida de Heterocigocidad , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA