Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 630(8016): 368-374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867128

RESUMEN

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Asunto(s)
Adhesivos , Vidrio , Oligopéptidos , Adhesivos/química , Vidrio/química , Temperatura , Vitrificación , Agua/química , Oligopéptidos/química , Tirosina/química , Luz , Rayos Infrarrojos
2.
Trends Biochem Sci ; 46(5): 391-405, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33423939

RESUMEN

Protein misfolding and aggregation are associated with human diseases and aging. However, microorganisms widely exploit the self-propagating properties of misfolded infectious protein particles, prions, as epigenetic information carriers that drive various phenotypic adaptations and encode molecular information. Microbial prion research has faced a paradigm shift in recent years, with breakthroughs that demonstrate the great functional and structural diversity of these agents. Here, we outline unorthodox examples of microbial prions in yeast and other microorganisms, focusing on their noncanonical functions. We discuss novel molecular mechanisms for the inheritance of conformationally-encoded epigenetic information and the evolutionary advantages they confer. Lastly, in light of recent advancements in the field of molecular self-assembly, we present a hypothesis regarding the existence of non-proteinaceous prion-like entities.


Asunto(s)
Priones , Humanos , Saccharomyces cerevisiae
3.
Chem Soc Rev ; 53(8): 3640-3655, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38450536

RESUMEN

Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.


Asunto(s)
Enlace de Hidrógeno , Péptidos , Péptidos/química , Porosidad
4.
J Pept Sci ; : e3626, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38810988

RESUMEN

Polylactide (PLA), a biocompatible and biodegradable polymer, is widely used in diverse biomedical applications. However, the industry standard for converting lactide into PLA involves toxic tin (Sn)-based catalysts. To mitigate the use of these harmful catalysts, other environmentally benign metal-containing agents for efficient lactide polymerization have been studied, but these alternatives are hindered by complex synthesis processes, reactivity issues, and selectivity limitations. To overcome these shortcomings, we explored the catalytic activity of Cu-(Phe)2 and Zn-(Phe)2 metal-amino acid co-assemblies as potential catalysts of the ring-opening polymerization (ROP) of lactide into PLA. Catalytic activity of the assemblies was monitored at different temperatures and solvents using 1H-NMR spectroscopy to determine the catalytic parameters. Notably, Zn-(Phe)2 achieved >99% conversion of lactide to PLA within 12 h in toluene under reflux conditions and was found to have first-order kinetics, whereas Cu-(Phe)2 exhibited significantly lower catalytic activity. Following Zn-(Phe)2-mediated catalysis, the resulting PLA had an average molecular weight of 128 kDa and a dispersity index of 1.25 as determined by gel permeation chromatography. Taken together, our minimalistic approach expands the realm of metal-amino acid-based supramolecular catalytic nanomaterials useful in the ROP of lactide. This advancement shows promise for the future design of simplified biocatalysts in both industrial and biomedical applications.

5.
Chem Soc Rev ; 52(17): 6191-6220, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37585216

RESUMEN

The development of next-generation bioelectronics, as well as the powering of consumer and medical devices, require power sources that are soft, flexible, extensible, and even biocompatible. Traditional energy storage devices (typically, batteries and supercapacitors) are rigid, unrecyclable, offer short-lifetime, contain hazardous chemicals and possess poor biocompatibility, hindering their utilization in wearable electronics. Therefore, there is a genuine unmet need for a new generation of innovative energy-harvesting materials that are soft, flexible, bio-compatible, and bio-degradable. Piezoelectric gels or PiezoGels are a smart crystalline form of gels with polar ordered structures that belongs to the broader family of piezoelectric material, which generate electricity in response to mechanical stress or deformation. Given that PiezoGels are structurally similar to hydrogels, they offer several advantages including intrinsic chirality, crystallinity, degree of ordered structures, mechanical flexibility, biocompatibility, and biodegradability, emphasizing their potential applications ranging from power generation to bio-medical applications. Herein, we describe recent examples of new functional PiezoGel materials employed for energy harvesting, sensing, and wound dressing applications. First, this review focuses on the principles of piezoelectric generators (PEGs) and the advantages of using hydrogels as PiezoGels in energy and biomedical applications. Next, we provide a detailed discussion on the preparation, functionalization, and fabrication of PiezoGel-PEGs (P-PEGs) for the applications of energy harvesting, sensing and wound healing/dressing. Finally, this review concludes with a discussion of the current challenges and future directions of P-PEGs.


Asunto(s)
Suministros de Energía Eléctrica , Hidrogeles , Electricidad , Electrónica , Sustancias Peligrosas
6.
J Am Chem Soc ; 145(28): 15331-15342, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37392396

RESUMEN

Variation in the molecular architecture significantly affects the electronic and supramolecular structure of biomolecular assemblies, leading to dramatically altered piezoelectric response. However, relationship between molecular building block chemistry, crystal packing and quantitative electromechanical response is still not fully understood. Herein, we systematically explored the possibility to amplify the piezoelectricity of amino acid-based assemblies by supramolecular engineering. We show that a simple change of side-chain in acetylated amino acids leads to increased polarization of the supramolecular arrangements, resulting in significant enhancement of their piezoelectric response. Moreover, compared to most of the natural amino acid assemblies, chemical modification of acetylation increased the maximum piezoelectric tensors. The predicted maximal piezoelectric strain tensor and voltage constant of acetylated tryptophan (L-AcW) assemblies reach 47 pm V-1 and 1719 mV m/N, respectively, comparable to commonly used inorganic materials such as bismuth triborate crystals. We further fabricated an L-AcW crystal-based piezoelectric power nanogenerator that produces a high and stable open-circuit voltage of over 1.4 V under mechanical pressure. For the first time, the illumination of a light-emitting diode (LED) is demonstrated by the power output of an amino acid-based piezoelectric nanogenerator. This work presents the supramolecular engineering toward the systematic modulation of piezoelectric response in amino acid-based assemblies, facilitating the development of high-performance functional biomaterials from simple, readily available, and easily tailored building blocks.


Asunto(s)
Aminoácidos , Triptófano , Acetilación , Materiales Biocompatibles , Bismuto
7.
Small ; 19(7): e2205754, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461689

RESUMEN

Carbon quantum dots (CDs) are a class of emerging carbonaceous nanomaterials that have received considerable attention due to their excellent fluorescent properties, extremely small size, ability to penetrate cells and tissues, ease of synthesis, surface modification, low cytotoxicity, and superior water dispersion. In light of these properties, CDs are extensively investigated as candidates for bioimaging probes, efficient drug carriers, and disease diagnostics. Functionalized CDs represent a promising therapeutic candidate for ocular diseases. Here, this work reviews the potential use of functionalized CDs in the diagnosis and treatment of eye-related diseases, including the treatment of macular and anterior segment diseases, as well as targeting Aß amyloids in the retina.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Carbono , Diagnóstico por Imagen , Portadores de Fármacos , Colorantes Fluorescentes , Humanos
8.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37373477

RESUMEN

Minimalistic peptide- and metabolite-based supramolecular hydrogels have great potential relative to traditional polymeric hydrogels in various biomedical and technological applications. Advantages such as remarkable biodegradability, high water content, favorable mechanical properties, biocompatibility, self-healing, synthetic feasibility, low cost, easy design, biological function, remarkable injectability, and multi-responsiveness to external stimuli make supramolecular hydrogels promising candidates for drug delivery, tissue engineering, tissue regeneration, and wound healing. Non-covalent interactions such as hydrogen bonding, hydrophobic interactions, electrostatic interactions, and π-π stacking interactions play key roles in the formation of peptide- and metabolite-containing low-molecular-weight hydrogels. Peptide- and metabolite-based hydrogels display shear-thinning and immediate recovery behavior due to the involvement of weak non-covalent interactions, making them supreme models for the delivery of drug molecules. In the areas of regenerative medicine, tissue engineering, pre-clinical evaluation, and numerous other biomedical applications, peptide- and metabolite-based hydrogelators with rationally designed architectures have intriguing uses. In this review, we summarize the recent advancements in the field of peptide- and metabolite-based hydrogels, including their modifications using a minimalistic building-blocks approach for various applications.


Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/química , Péptidos/química , Medicina Regenerativa , Ingeniería de Tejidos , Sistemas de Liberación de Medicamentos
9.
Angew Chem Int Ed Engl ; 62(6): e202214583, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36434750

RESUMEN

Flexible and biocompatible metal peptide frameworks (MPFs) derived from short and ultra-short peptides have been explored for the storage of greenhouse gases, molecular recognition, and chiral transformations. In addition to short flexible peptides, peptides with specifically folded conformations have recently been utilized to fabricate a variety of metal helix frameworks (MHFs). The secondary structures of the peptides govern the structure-assembly relationship and thereby control the formation of three-dimensional (3D)-MHFs. Particularly, the hierarchical structural organization of peptide-based MHFs has not yet been discussed in detail. Here, we describe the recent progress of metal-driven folded peptide assembly to construct 3D porous structures for use in future energy storage, chiral recognition, and biomedical applications, which could be envisioned as an alternative to the conventional metal-organic frameworks (MOFs).


Asunto(s)
Estructuras Metalorgánicas , Péptidos , Péptidos/química , Estructuras Metalorgánicas/química , Estructura Secundaria de Proteína
10.
J Am Chem Soc ; 144(8): 3468-3476, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35073071

RESUMEN

The apparent piezoelectricity of biological materials is not yet fully understood at the molecular level. In particular, dynamic noncovalent interactions, such as host-guest binding, are not included in the classical piezoelectric model, which limits the rational design of eco-friendly piezoelectric supramolecular materials. Here, inspired by the conformation-dependent mechanoresponse of the Piezo channel proteins, we show that guest-host interactions can amplify the electromechanical response of a conformationally mobile peptide metal-organic framework (MOF) based on the endogenous carnosine dipeptide, demonstrating a new type of adaptive piezoelectric supramolecular material. Density functional theory (DFT) predictions validated by piezoresponse force microscopy (PFM) measurements show that directional alignment of the guest molecules in the host carnosine-zinc peptide MOF channel determines the macroscopic electromechanical properties. We produce stable, robust 1.4 V open-circuit voltage under applied force of 25 N with a frequency of 0.1 Hz. Our findings demonstrate that the regulation of host-guest interactions could serve as an efficient method for engineering sustainable peptide-based power generators.


Asunto(s)
Carnosina , Estructuras Metalorgánicas , Microscopía de Fuerza Atómica , Conformación Molecular , Compuestos Orgánicos
11.
Angew Chem Int Ed Engl ; 60(31): 17164-17170, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34014019

RESUMEN

The structural arrangement of amino acid residues in native enzymes underlies their remarkable catalytic properties, thus providing a notable point of reference for designing potent yet simple biomimetic catalysts. Herein, we describe a minimalistic approach to construct a dipeptide-based nano-superstructure with enzyme-like activity. The self-assembled biocatalyst comprises one peptide as a single building block, readily synthesized from histidine. Through coordination with zinc ion, the peptide self-assembly procedure allows the formation of supramolecular ß-sheet ordered nanocrystals, which can be used as basic units to further construct higher-order superstructure. As a result, remarkable hydrolysis activity and enduring stability are demonstrated. Our work exemplifies the use of a bioinspired supramolecular assembly approach to develop next-generation biocatalysts for biotechnological applications.


Asunto(s)
Nanopartículas/química , Péptidos/química , Histidina/química , Hidrólisis , Tamaño de la Partícula , Péptidos/síntesis química
12.
Adv Funct Mater ; 30(10)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32256278

RESUMEN

The self-assembly of cyclodipeptides composed of natural aromatic amino acids into supramolecular structures of diverse morphologies with intrinsic emissions in the visible light region is demonstrated. The assembly process can be halted at the initial oligomerization by coordination with zinc ions, with the most prominent effect observed for cyclo-dihistidine (cyclo-HH). This process is mediated by attracting and pulling of the metal ions from the solvent into the peptide environment, rather than by direct interaction in the solvent as commonly accepted, thus forming an "environment-switching" doping mechanism. The doping induces a change of cyclo-HH molecular configurations and leads to the formation of pseudo "core/shell" clusters, comprising peptides and zinc ions organized in ordered conformations partially surrounded by relatively amorphous layers, thus significantly enhancing the emissions and allowing the application of the assemblies for ecofriendly color-converted light emitting diodes. These findings shed light into the very initial coordination procedure and elucidate an alternative mechanism of metal ions doping on biomolecules, thus presenting a promising avenue for integration of the bioorganic world and the optoelectronic field.

13.
Angew Chem Int Ed Engl ; 59(43): 19037-19041, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32691899

RESUMEN

Bottom-up self-assembled bioinspired materials have attracted increasing interest in a variety fields. The use of peptide supramolecular semiconductors for optoelectronic applications is especially intriguing. However, the characteristic thermal unsustainability limits their practical application. Here, we report the thermal sustainability of cyclo-ditryptophan assemblies up to 680 K. Non-covalent interactions underlie the stability mechanism, generating a low exciton-binding energy of only 0.29 eV and a high thermal-quenching-activation energy of up to 0.11 eV. The contributing forces comprise predominantly of aromatic interactions, followed by hydrogen bonding between peptide molecules, and, to a lesser extent, water-mediated associations. This thermal sustainability results in a temperature-dependent conductivity of the supramolecular semiconductors, showing 93 % reduction of the resistance from 320 K to 440 K. Our results establish thermo-sustainable peptide self-assembly for heat-sensitive applications.


Asunto(s)
Temperatura , Cristalización , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Estructura Molecular , Péptidos/química , Semiconductores , Termogravimetría
14.
Acc Chem Res ; 51(9): 2187-2197, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30095247

RESUMEN

The unique physiochemical properties and multiscale organization of layered materials draw the attention of researchers across a wide range of scientific disciplines. Layered structures are commonly found in diverse biological systems where they fulfill various functions. A prominent example of layered biological materials is the organization of proteins and polypeptides into the archetypal aggregated amyloidal structures. While the organization of proteins into amyloid structures was initially associated with various degenerative disorders, it was later revealed that proteins not related to any disease could also form identical layered assemblies. Thus, it appears that the ability of peptides and proteins to produce amyloid-like aggregates represents a generic property of polyamides to assemble into higher order fibrillar structures. In the aggregated state, the peptide backbone forms ß-sheet structures which are further organized into layered arrangements. We have recently extended the identified amyloidogenic building blocks to include not only peptides or proteins, but also single amino acids and other metabolites. High resolution spectroscopy and crystallography analyses confirm the clear potential of amino acids and other metabolites to form layered amyloid-like aggregates showing biophysical and biochemical properties similar to protein amyloids. Therefore, the generic propensity of peptides and proteins backbones to assemble into layered organizations may emanate from their basic building block, the amino acid. In this Account, we aim to introduce the concept of supramolecular ß-sheet organization of single amino acids and to present an analysis of their layered-structure organization based on single crystal structures. We demonstrate that, despite the different side-chains that considerably vary in their chemical properties, all coded amino acids display a layer-like assembly stabilized by α-amine to α-carboxyl H-bonds, resembling supramolecular ß-sheet structures, while the side-chains determine the higher order organization of the layers. Our work presents the first analysis of the ß-sheet propensity of single amino acids in their unbound form, indicating an evolutionary predisposition. We classify the amino acids ß-sheet propensity on the basis of the interlayer separation distance in the crystal packing, which correlates well with previously reported classifications based on various criteria, such as hydrophobicity, steric bulkiness, and folding. In addition, we demonstrate that the relative direction of α-amine to α-carboxyl H-bonding pattern provides critical insights regarding the stabilization of parallel versus antiparallel ß-sheet structures by the various amino acids. Taken together, our analysis of amino acid crystals provides substantial information regarding protein folding and dynamics and could serve as basic rules set for the design of potential building blocks for molecular self-assembly to produce functional materials of tunable properties, an important objective of bottom-up nanotechnology.

15.
PLoS Genet ; 10(5): e1004360, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875170

RESUMEN

During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE). Somatic mutagenesis of Pax6 in the differentiating RPE revealed that PAX6 functions in a feed-forward regulatory loop with MITF during onset of melanogenesis. PAX6 both controls the expression of an RPE isoform of Mitf and synergizes with MITF to activate expression of genes involved in pigment biogenesis. This study exemplifies how one kernel gene pivotal in organ formation accomplishes a lineage-specific role during terminal differentiation of a single lineage.


Asunto(s)
Diferenciación Celular/genética , Proteínas del Ojo/biosíntesis , Proteínas de Homeodominio/biosíntesis , Factor de Transcripción Asociado a Microftalmía/genética , Organogénesis/genética , Factores de Transcripción Paired Box/biosíntesis , Proteínas Represoras/biosíntesis , Animales , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Factor de Transcripción Asociado a Microftalmía/biosíntesis , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Pigmentación/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/metabolismo
16.
ACS Nano ; 18(2): 1257-1288, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38157317

RESUMEN

Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.


Asunto(s)
Aminoácidos , Materiales Biomiméticos , Materiales Biomiméticos/química , Nanotecnología , Péptidos/química , Materiales Biocompatibles
17.
ACS Appl Bio Mater ; 7(4): 2309-2324, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478987

RESUMEN

Peptide-based nanomaterials can serve as promising drug delivery agents, facilitating the release of active pharmaceutical ingredients while reducing the risk of adverse reactions. We previously demonstrated that Cyclo-Histidine-Histidine (Cyclo-HH), co-assembled with cancer drug Epirubicin, zinc, and nitrate ions, can constitute an attractive drug delivery system, combining drug self-encapsulation, enhanced fluorescence, and the ability to transport the drug into cells. Here, we investigated both computationally and experimentally whether Cyclo-HH could co-assemble, in the presence of zinc and nitrate ions, with other cancer drugs with different physicochemical properties. Our studies indicated that Methotrexate, in addition to Epirubicin and its epimer Doxorubicin, and to a lesser extent Mitomycin-C and 5-Fluorouracil, have the capacity to co-assemble with Cyclo-HH, zinc, and nitrate ions, while a significantly lower propensity was observed for Cisplatin. Epirubicin, Doxorubicin, and Methorexate showed improved drug encapsulation and drug release properties, compared to Mitomycin-C and 5-Fluorouracil. We demonstrated the biocompatibility of the co-assembled systems, as well as their ability to intracellularly release the drugs, particularly for Epirubicin, Doxorubicin, and Methorexate. Zinc and nitrate were shown to be important in the co-assembly, coordinating with drugs and/or Cyclo-HH, thereby enabling drug-peptide as well as drug-drug interactions in successfully formed nanocarriers. The insights could be used in the future design of advanced cancer therapeutic systems with improved properties.


Asunto(s)
Antineoplásicos , Neoplasias , Epirrubicina/uso terapéutico , Histidina/química , Mitomicina , Nitratos , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Péptidos/química , Fluorouracilo/uso terapéutico , Zinc , Neoplasias/tratamiento farmacológico
18.
Pharmaceutics ; 15(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36839667

RESUMEN

Tissue engineering (TE) is a rapidly expanding field aimed at restoring or replacing damaged tissues. In spite of significant advancements, the implementation of TE technologies requires the development of novel, highly biocompatible three-dimensional tissue structures. In this regard, the use of peptide self-assembly is an effective method for developing various tissue structures and surface functionalities. Specifically, the arginine-glycine-aspartic acid (RGD) family of peptides is known to be the most prominent ligand for extracellular integrin receptors. Due to their specific expression patterns in various human tissues and their tight association with various pathophysiological conditions, RGD peptides are suitable targets for tissue regeneration and treatment as well as organ replacement. Therefore, RGD-based ligands have been widely used in biomedical research. This review article summarizes the progress made in the application of RGD for tissue and organ development. Furthermore, we examine the effect of RGD peptide structure and sequence on the efficacy of TE in clinical and preclinical studies. Additionally, we outline the recent advancement in the use of RGD functionalized biomaterials for the regeneration of various tissues, including corneal repair, artificial neovascularization, and bone TE.

19.
Research (Wash D C) ; 6: 0046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36930775

RESUMEN

Hydrogen bonds are non-covalent interactions and essential for assembling supermolecules into ordered structures in biological systems, endowing crystals with fascinating physical properties, and inspiring the construction of eco-friendly electromechanical devices. However, the interplay between hydrogen bonding and the physical properties is not fully understood at the molecular level. Herein, we demonstrate that the physical property of biological crystals with double-layer structures could be enhanced by rationally controlling hydrogen bonding interactions between amino and carboxyl groups. Different hydrogen bonding interactions result in various thermal, mechanical, electronic, and piezoelectric properties. In particular, the weak interaction between O and H atoms contributes to low mechanical strength that permits important ion displacement under stress, giving rise to a strong piezoelectric response. This study not only reveals the correlation between the hydrogen bonding and physical properties in double-layer structures of biological crystals but also demonstrates the potential of these crystals as functional biomaterials for high-performance energy-harvesting devices. Theoretical calculations and experimental verifications in this work provide new insights into the rational design of biomaterials with desirable physical properties for bioelectrical devices by modulating intermolecular interactions.

20.
ACS Nano ; 17(3): 2737-2744, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36696300

RESUMEN

Amino acids are the most simplistic bio-building blocks and perform a variety of functions in metabolic activities. Increasing publications report that amino acid-based superstructures present amyloid-like characteristics, arising from their supramolecular ß-sheet secondary structures driven by hydrogen-bonding-connected supramolecular ß-strands, which are formed by head-to-tail hydrogen bonds between terminal amino and carboxyl groups of the adjacent residues. Therefore, the establishment of the structure-function relationships is critical for exploring the properties and applications of amino acid assemblies. Among the naturally encoded self-assembling amino acids, tyrosine (Y)-based superstructures have been found to show diverse properties and functions including high rigidity, promoting melanin formations, mood regulations, and preventing anxiety, thus showing promising potential as next-generation functional biomaterials for biomedical and bio-machine interface applications. However, the development of Y-based organizations of functional features is severely limited due to the intrinsic difficulty of modulating the energetically stable supramolecular ß-sheet structures. Herein, we report that by the racemic assembly of l-Y and d-Y, the supramolecular secondary structures are modulated from the antiparallel ß-sheets in the enantiomeric assemblies to the parallel ones in the racemate counterparts, thus leading to higher degrees of freedom, which finally induce distinct organization kinetics and modulation of the physicochemical properties including the optical shifts, elastic softening, and the piezoelectric outputs of the superstructures.


Asunto(s)
Aminoácidos , Conformación Proteica en Lámina beta , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA