Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 592(7854): 428-432, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790465

RESUMEN

Chronic, sustained exposure to stressors can profoundly affect tissue homeostasis, although the mechanisms by which these changes occur are largely unknown. Here we report that the stress hormone corticosterone-which is derived from the adrenal gland and is the rodent equivalent of cortisol in humans-regulates hair follicle stem cell (HFSC) quiescence and hair growth in mice. In the absence of systemic corticosterone, HFSCs enter substantially more rounds of the regeneration cycle throughout life. Conversely, under chronic stress, increased levels of corticosterone prolong HFSC quiescence and maintain hair follicles in an extended resting phase. Mechanistically, corticosterone acts on the dermal papillae to suppress the expression of Gas6, a gene that encodes the secreted factor growth arrest specific 6. Restoring Gas6 expression overcomes the stress-induced inhibition of HFSC activation and hair growth. Our work identifies corticosterone as a systemic inhibitor of HFSC activity through its effect on the niche, and demonstrates that the removal of such inhibition drives HFSCs into frequent regeneration cycles, with no observable defects in the long-term.


Asunto(s)
Corticosterona/farmacología , Folículo Piloso/citología , Células Madre/citología , Células Madre/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/cirugía , Adrenalectomía , Animales , División Celular/efectos de los fármacos , Femenino , Folículo Piloso/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Transcriptoma , Regulación hacia Arriba
2.
Cell ; 145(2): 183-97, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21477851

RESUMEN

The embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal. We demonstrate that Wdr5, an "effector" of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. The Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators, and furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for the maintenance of ES cell self-renewal and somatic cell reprogramming.


Asunto(s)
Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Proteínas/metabolismo , Animales , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Metilación , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia de ADN , Activación Transcripcional
3.
Nature ; 594(7864): 500-501, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108720
4.
Exp Dermatol ; 30(4): 512-521, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33006790

RESUMEN

Hair follicles cyclically regenerate throughout adult mammalian life, owing to a resident population of epithelial hair follicle stem cells. Stem cell (SC) activity drives bouts of follicle growth, which are periodically interrupted by follicle regression and rest. These phases and the transitions between them are tightly spatiotemporally coordinated by signalling crosstalk between stem/progenitor cells and the various cell types of the microenvironment, or niche. The dermal papilla (DP) is a cluster of specialized mesenchymal cells that have long been recognized for important niche roles in regulating hair follicle SC activation, as well as progenitor proliferation and differentiation during follicle growth. In addition to the DP, the mesenchyme of the murine pelage follicle is also comprised of a follicle-lining smooth muscle known as the dermal sheath (DS), which has been far less studied than the DP yet may be equally specialized and important for hair cycling. In this review, we define the murine pelage DS in comparison with human DS and discuss recent work that highlights the emergent importance of the DS in the hair follicle SC niche. Last, we examine potential therapeutic applications for the DS in hair regeneration and wound healing.


Asunto(s)
Folículo Piloso/fisiología , Regeneración/fisiología , Nicho de Células Madre/fisiología , Células Madre/fisiología , Alopecia , Animales , Humanos , Ratones , Cicatrización de Heridas
5.
Exp Dermatol ; 28(4): 332-344, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30887615

RESUMEN

Hair follicle (HF) formation in developing embryonic skin requires stepwise signalling between the epithelial epidermis and mesenchymal dermis, and their specialized derivatives, the placode/germ/peg and dermal condensate/papilla, respectively. Classically, distinct stages of HF morphogenesis have been defined, in the mouse model, based on (a) changes in cell morphology and aggregation; (b) expression of few known molecular markers; (c) the extent of follicle downgrowth; and (d) the presence of differentiating cell types. Refined genetic strategies and recent emerging technologies, such as live imaging and transcriptome analyses of isolated cell populations or single cells, have enabled a closer dissection of the signalling requirements at different stages of HF formation, particularly early on. They have also led to the discovery of precursor cells for placode, dermal condensate and future bulge stem cells that, combined with molecular insights into their fate specification and subsequent formation, serve as novel landmarks for early HF morphogenetic events and studies of the signalling networks mediating these processes. In this review, we integrate the emergence of HF precursor cell states and novel molecular markers of fate and formation to update the widely used 20-year-old seminal classification guide of HF morphogenetic stages by Paus et al. We then temporally describe the latest insights into the early cellular and molecular events and signalling requirements for HF morphogenesis in relation to one another in a holistic manner.


Asunto(s)
Folículo Piloso/embriología , Animales , Humanos , Morfogénesis , Transducción de Señal
7.
Dev Biol ; 385(2): 179-88, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24309208

RESUMEN

Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18(Cre) knockin mouse line to ablate the Wnt-responsive transcription factor ß-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of ß-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2(+) dermal condensates initiate normally; however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic ß-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events.


Asunto(s)
Cabello/crecimiento & desarrollo , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Exp Dermatol ; 24(6): 468-70, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25708924

RESUMEN

Embryonic hair follicle (HF) induction and formation is dependent on signalling crosstalk between the dermis and specialized dermal condensates on the mesenchymal side and epidermal cells and incipient placodes on the epithelial side, but the precise nature and succession of signals remain unclear. Platelet-derived growth factor (PDGF) signalling is involved in the development of several organs and the maintenance of adult tissues, including HF regeneration in the hair cycle. As both PDGF receptors, PDGFRα and PDGFRß, are expressed in embryonic dermis and dermal condensates, we explored in this study the role of PDGF signalling in HF induction and formation in the developing skin mesenchyme. We conditionally ablated both PDGF receptors with Tbx18(Cre) in early dermal condensates before follicle formation, and with Prx1-Cre broadly in the ventral dermis prior to HF induction. In both PDGFR double mutants, HF induction and formation ensued normally, and the pattern of HF formation and HF numbers were unaffected. These data demonstrate that mesenchymal PDGF signalling, either in the specialized niche or broadly in the dermis, is dispensable for HF induction and formation.


Asunto(s)
Dermis/embriología , Folículo Piloso/embriología , Morfogénesis/fisiología , Factor de Crecimiento Derivado de Plaquetas/fisiología , Transducción de Señal/fisiología , Animales , Dermis/citología , Dermis/fisiología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Folículo Piloso/citología , Folículo Piloso/fisiología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/fisiología , Ratones , Ratones Mutantes , Modelos Animales , Morfogénesis/genética , Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/fisiología , Transducción de Señal/genética
9.
Semin Cell Dev Biol ; 23(8): 917-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22960356

RESUMEN

Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling.


Asunto(s)
Ciclo Celular , Transición Epitelial-Mesenquimal , Folículo Piloso/citología , Morfogénesis , Animales , Comunicación Celular , Folículo Piloso/embriología , Folículo Piloso/metabolismo , Humanos , Transducción de Señal
10.
Exp Dermatol ; 23(10): 748-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25066162

RESUMEN

Hair follicle (HF) morphogenesis relies on the coordinated exchange of signals between mesenchymal and epithelial compartments of embryonic skin. Chemokine receptor Cxcr4 expression was recently identified in dermal condensates (DCs) of nascent HFs, but its role in promoting HF morphogenesis remains unknown. Our analyses confirmed Cxcr4 expression in condensate cells, and additionally revealed transient Cxcr4 expression in incipient epithelial hair placodes. Placodal Cxcr4 appeared prior to detection in DCs, representing a switch of expression between epithelial and mesenchymal compartments. To explore the functional role of this receptor in both compartments for early HF formation, we conditionally ablated Cxcr4 with condensate-targeting Tbx18(cre) knock-in and epidermis-targeting Krt14-cre transgenic mice. Conditional knockouts for both crosses were viable throughout embryogenesis and into adulthood. Morphological and biochemical marker analyses revealed comparable numbers of HFs forming in knockout embryos compared to wild-type littermate controls in both cases, suggesting that neither dermal nor epithelial Cxcr4 expression is required for early HF morphogenesis. We conclude that Cxcr4 expression and chemokine signaling through this receptor in embryonic mouse skin is dispensable for HF formation.


Asunto(s)
Folículo Piloso/embriología , Folículo Piloso/metabolismo , Receptores CXCR4/metabolismo , Animales , Epitelio/embriología , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Morfogénesis , Receptores CXCR4/deficiencia , Receptores CXCR4/genética , Transducción de Señal
11.
Nat Cell Biol ; 25(2): 222-234, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36717629

RESUMEN

Substantial follicle remodelling during the regression phase of the hair growth cycle is coordinated by the contraction of the dermal sheath smooth muscle, but how dermal-sheath-generated forces are regulated is unclear. Here, we identify spatiotemporally controlled endothelin signalling-a potent vasoconstriction-regulating pathway-as the key activating mechanism of dermal sheath contraction. Pharmacological blocking or genetic ablation of both endothelin receptors, ETA and ETB, impedes dermal sheath contraction and halts follicle regression. Epithelial progenitors at the club hair-epithelial strand bottleneck produce the endothelin ligand ET-1, which is required for follicle regression. ET signalling in dermal sheath cells and downstream contraction is dynamically regulated by cytoplasmic Ca2+ levels through cell membrane and sarcoplasmic reticulum calcium channels. Together, these findings illuminate an epithelial-mesenchymal interaction paradigm in which progenitors-destined to undergo programmed cell death-control the contraction of the surrounding sheath smooth muscle to orchestrate homeostatic tissue regression and reorganization for the next stem cell activation and regeneration cycle.


Asunto(s)
Endotelinas , Folículo Piloso , Folículo Piloso/metabolismo , Endotelinas/metabolismo , Endotelinas/farmacología , Receptores de Endotelina/metabolismo , Músculo Liso/metabolismo , Transducción de Señal , Contracción Muscular
12.
Dev Cell ; 58(20): 2140-2162.e5, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37591247

RESUMEN

A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.


Asunto(s)
Epidermis , Piel , Ratones , Animales , Folículo Piloso/patología , Cabello , Epitelio
13.
Stem Cells ; 29(6): 964-71, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21563278

RESUMEN

Reprogramming patient-specific somatic cells into induced pluripotent stem (iPS) cells has great potential to develop feasible regenerative therapies. However, several issues need to be resolved such as ease, efficiency, and safety of generation of iPS cells. Many different cell types have been reprogrammed, most conveniently even peripheral blood mononuclear cells. However, they typically require the enforced expression of several transcription factors, posing mutagenesis risks as exogenous genetic material. To reduce this risk, iPS cells were previously generated with Oct4 alone from rather inaccessible neural stem cells that endogenously express the remaining reprogramming factors and very recently from fibroblasts with Oct4 alone in combination with additional small molecules. Here, we exploit that dermal papilla (DP) cells from hair follicles in the skin express all but one reprogramming factors to show that these accessible cells can be reprogrammed into iPS cells with the single transcription factor Oct4 and without further manipulation. Reprogramming was already achieved after 3 weeks and with efficiencies similar to other cell types reprogrammed with four factors. Dermal papilla-derived iPS cells are comparable to embryonic stem cells with respect to morphology, gene expression, and pluripotency. We conclude that DP cells may represent a preferred cell type for reprogramming accessible cells with less manipulation and for ultimately establishing safe conditions in the future by replacing Oct4 with small molecules.


Asunto(s)
Folículo Piloso/citología , Células Madre Pluripotentes Inducidas/citología , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Proteínas Recombinantes/biosíntesis , Animales , Diferenciación Celular , Clonación Molecular , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Epigénesis Genética , Femenino , Fertilización In Vitro , Perfilación de la Expresión Génica , Genoma , Impresión Genómica , Folículo Piloso/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/genética , Interferencia de ARN , Proteínas Recombinantes/genética , Transgenes , Quimera por Trasplante
14.
Stem Cells ; 28(2): 221-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20014278

RESUMEN

Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells by only four transcription factors (Oct4, Sox2, Klf4, and c-Myc) has great potential for tissue-specific regenerative therapies, eliminating the ethical issues surrounding the use of embryonic stem cells and the rejection problems of using non-autologous cells. The reprogramming efficiency generally is very low, however, and the problems surrounding the introduction of viral genetic material are only partially investigated. Recent efforts to reduce the number of virally expressed transcription factors succeeded at reprogramming neural stem cells into iPS cells by overexpressing Oct4 alone. However, the relative inaccessibility and difficulty of obtaining neural cells in humans remains to be resolved. Here we report that dermal papilla (DP) cells, which are specialized skin fibroblasts thought to instruct hair follicle stem cells, endogenously express high levels of Sox2 and c-Myc, and that these cells can be reprogrammed into iPS cells with only Oct4 and Klf4. Moreover, we show that DP cells are reprogrammed more efficiently than skin and embryonic fibroblasts. iPS cells derived from DP cells expressed pluripotency genes and differentiated into cells from all germ layers in vitro and widely contributed to chimeric mice in vivo, including the germline. Our work establishes DP cells as an easily accessible source to generate iPS cells with efficiency and with less genetic material. This opens up the possibility of streamlined generation of skin-derived, patient-specific pluripotent stem cells and of ultimately replacing the remaining two factors with small molecules for safe generation of transplantable cells.


Asunto(s)
Reprogramación Celular/fisiología , Dermis/citología , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Células Cultivadas , Reprogramación Celular/genética , Dermis/metabolismo , Femenino , Fibroblastos/citología , Gonadotropinas Equinas , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1
15.
Science ; 367(6474): 161-166, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31857493

RESUMEN

Tissue homeostasis requires the balance of growth by cell production and regression through cell loss. In the hair cycle, during follicle regression, the niche traverses the skin through an unknown mechanism to reach the stem cell reservoir and trigger new growth. Here, we identify the dermal sheath that lines the follicle as the key driver of tissue regression and niche relocation through the smooth muscle contractile machinery that generates centripetal constriction force. We reveal that the calcium-calmodulin-myosin light chain kinase pathway controls sheath contraction. When this pathway is blocked, sheath contraction is inhibited, impeding follicle regression and niche relocation. Thus, our study identifies the dermal sheath as smooth muscle that drives follicle regression for reuniting niche and stem cells in order to regenerate tissue structure during homeostasis.


Asunto(s)
Dermis/fisiología , Folículo Piloso/fisiología , Músculo Liso/fisiología , Regeneración , Nicho de Células Madre/fisiología , Agrecanos/genética , Animales , Humanos , Ratones , Ratones Mutantes , Contracción Muscular
16.
Cell Stem Cell ; 26(6): 880-895.e6, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32302523

RESUMEN

Mature adipocytes store fatty acids and are a common component of tissue stroma. Adipocyte function in regulating bone marrow, skin, muscle, and mammary gland biology is emerging, but the role of adipocyte-derived lipids in tissue homeostasis and repair is poorly understood. Here, we identify an essential role for adipocyte lipolysis in regulating inflammation and repair after injury in skin. Genetic mouse studies revealed that dermal adipocytes are necessary to initiate inflammation after injury and promote subsequent repair. We find through histological, ultrastructural, lipidomic, and genetic experiments in mice that adipocytes adjacent to skin injury initiate lipid release necessary for macrophage inflammation. Tamoxifen-inducible genetic lineage tracing of mature adipocytes and single-cell RNA sequencing revealed that dermal adipocytes alter their fate and generate ECM-producing myofibroblasts within wounds. Thus, adipocytes regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.


Asunto(s)
Lipólisis , Miofibroblastos , Adipocitos , Animales , Macrófagos , Ratones , Piel
18.
J Leukoc Biol ; 83(3): 610-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18029397

RESUMEN

There is growing evidence that plasmacytoid dendritic cells (pDC) are involved in the innate recognition of various microbes. However, the precise consequences of pathogen recognition on pDC activation and function are incompletely understood. Using a novel transgenic mouse model that facilitates the isolation of highly pure pDC populations, we found that influenza virus PR/8, a TLR7 ligand, and CpG 1826 oligonucleotide, a TLR9 ligand, induced surprisingly divergent activation programs in these cells. pDC stimulated with PR/8 produced large amounts of type I IFNs, and CpG 1826-stimulated pDC expressed higher levels of costimulatory molecules and proinflammatory cytokines and induced stronger proliferation of T cells. Transcriptome analysis uncovered the differential regulation in pDC of 178 and 1577 genes by PR/8 and CpG 1826, respectively. These differences may relate to the activation of discrete signaling pathways, as evidenced by distinct ERK1/2 and p38 MAPK phosphorylation kinetics. Finally, pDC isolated ex vivo during PR/8 infection or after i.v. CpG 1826 injection resembled their in vitro counterparts, corroborating that these cells can adopt specialized phenotypes in vivo. Thus, pDC display remarkable functional flexibility, which emphasizes their versatile functions in antimicrobial immunity and inflammatory processes.


Asunto(s)
Células Dendríticas/fisiología , Células Dendríticas/virología , Fosfatos de Dinucleósidos/farmacología , Oligodesoxirribonucleótidos/farmacología , Linfocitos T/inmunología , Animales , Células Dendríticas/efectos de los fármacos , Proteínas de Homeodominio/genética , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Orthomyxoviridae , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/fisiología , Células Plasmáticas/virología , Linfocitos T/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
19.
Dev Cell ; 48(1): 32-48.e5, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595537

RESUMEN

Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.


Asunto(s)
Diferenciación Celular/fisiología , Dermis/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Folículo Piloso/metabolismo , Animales , Fibroblastos/citología , Folículo Piloso/embriología , Transducción de Señal/genética , Piel/metabolismo , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA