RESUMEN
A long-standing topic of interest in human neurosciences is the understanding of the neurobiology underlying human cognition. Less commonly considered is to what extent such systems may be shared with other species. We examined individual variation in brain connectivity in the context of cognitive abilities in chimpanzees (n = 45) and humans in search of a conserved link between cognition and brain connectivity across the two species. Cognitive scores were assessed on a variety of behavioral tasks using chimpanzee- and human-specific cognitive test batteries, measuring aspects of cognition related to relational reasoning, processing speed, and problem solving in both species. We show that chimpanzees scoring higher on such cognitive skills display relatively strong connectivity among brain networks also associated with comparable cognitive abilities in the human group. We also identified divergence in brain networks that serve specialized functions across humans and chimpanzees, such as stronger language connectivity in humans and relatively more prominent connectivity between regions related to spatial working memory in chimpanzees. Our findings suggest that core neural systems of cognition may have evolved before the divergence of chimpanzees and humans, along with potential differential investments in other brain networks relating to specific functional specializations between the two species.
Asunto(s)
Conectoma , Pan troglodytes , Animales , Humanos , Neurobiología , Encéfalo , Cognición , Imagen por Resonancia MagnéticaRESUMEN
Biased emotion processing has been suggested to underlie the etiology and maintenance of depression. Neuroimaging studies have shown mood-congruent alterations in amygdala activity in patients with acute depression, even during early, automatic stages of emotion processing. However, due to a lack of prospective studies over periods longer than 8 weeks, it is unclear whether these neurofunctional abnormalities represent a persistent correlate of depression even in remission. In this prospective case-control study, we aimed to examine brain functional correlates of automatic emotion processing in the long-term course of depression. In a naturalistic design, n = 57 patients with acute major depressive disorder (MDD) and n = 37 healthy controls (HC) were assessed with functional magnetic resonance imaging (fMRI) at baseline and after 2 years. Patients were divided into two subgroups according to their course of illness during the study period (n = 37 relapse, n = 20 no-relapse). During fMRI, participants underwent an affective priming task that assessed emotion processing of subliminally presented sad and happy compared to neutral face stimuli. A group × time × condition (3 × 2 × 2) ANOVA was performed for the amygdala as region-of-interest (ROI). At baseline, there was a significant group × condition interaction, resulting from amygdala hyperactivity to sad primes in patients with MDD compared to HC, whereas no difference between groups emerged for happy primes. In both patient subgroups, amygdala hyperactivity to sad primes persisted after 2 years, regardless of relapse or remission at follow-up. The results suggest that amygdala hyperactivity during automatic processing of negative stimuli persists during remission and represents a trait rather than a state marker of depression. Enduring neurofunctional abnormalities may reflect a consequence of or a vulnerability to depression.
Asunto(s)
Amígdala del Cerebelo , Trastorno Depresivo Mayor , Emociones , Imagen por Resonancia Magnética , Humanos , Amígdala del Cerebelo/fisiopatología , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Trastorno Depresivo Mayor/fisiopatología , Emociones/fisiología , Estudios de Casos y Controles , Persona de Mediana Edad , Estudios Prospectivos , Expresión Facial , Depresión/fisiopatología , Mapeo Encefálico/métodos , Estimulación SubliminalRESUMEN
Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.
Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Factor de Necrosis Tumoral alfa , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/metabolismo , Masculino , Femenino , Adulto , Factor de Necrosis Tumoral alfa/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Herencia Multifactorial/genética , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Velocidad de ProcesamientoRESUMEN
Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.
Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Conectoma/métodos , Adulto , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Vías Nerviosas/patología , Adulto JovenRESUMEN
BACKGROUND: Magnetic resonance imaging (MRI) studies on major depressive disorder (MDD) have predominantly found short-term electroconvulsive therapy (ECT)-related gray matter volume (GMV) increases, but research on the long-term stability of such changes is missing. Our aim was to investigate long-term GMV changes over a 2-year period after ECT administration and their associations with clinical outcome. METHODS: In this nonrandomized longitudinal study, patients with MDD undergoing ECT (n = 17) are assessed three times by structural MRI: Before ECT (t0), after ECT (t1) and 2 years later (t2). A healthy (n = 21) and MDD non-ECT (n = 33) control group are also measured three times within an equivalent time interval. A 3(group) × 3(time) ANOVA on whole-brain level and correlation analyses with clinical outcome variables is performed. RESULTS: Analyses yield a significant group × time interaction (pFWE < 0.001) resulting from significant volume increases from t0 to t1 and decreases from t1 to t2 in the ECT group, e.g., in limbic areas. There are no effects of time in both control groups. Volume increases from t0 to t1 correlate with immediate and delayed symptom increase, while volume decreases from t1 to t2 correlate with long-term depressive outcome (all p ⩽ 0.049). CONCLUSIONS: Volume increases induced by ECT appear to be a transient phenomenon as volume strongly decreased 2 years after ECT. Short-term volume increases are associated with less symptom improvement suggesting that the antidepressant effect of ECT is not due to volume changes. Larger volume decreases are associated with poorer long-term outcome highlighting the interplay between disease progression and structural changes.
Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/patología , Terapia Electroconvulsiva/métodos , Depresión , Estudios Longitudinales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodosRESUMEN
Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.
Asunto(s)
Conectoma , Trastorno Depresivo Mayor , Humanos , Imagen de Difusión Tensora , Predisposición Genética a la Enfermedad , Imagen por Resonancia Magnética/métodos , EncéfaloRESUMEN
Childhood maltreatment (CM) has been associated with changes in structural brain connectivity even in the absence of mental illness. Social support, an important protective factor in the presence of childhood maltreatment, has been positively linked to white matter integrity. However, the shared effects of current social support and CM and their association with structural connectivity remain to be investigated. They might shed new light on the neurobiological basis of the protective mechanism of social support. Using connectome-based predictive modeling (CPM), we analyzed structural connectomes of N = 904 healthy adults derived from diffusion-weighted imaging. CPM predicts phenotypes from structural connectivity through a cross-validation scheme. Distinct and shared networks of white matter tracts predicting childhood trauma questionnaire scores and the social support questionnaire were identified. Additional analyses were applied to assess the stability of the results. CM and social support were predicted significantly from structural connectome data (all rs ≥ 0.119, all ps ≤ 0.016). Edges predicting CM and social support were inversely correlated, i.e., positively correlated with CM and negatively with social support, and vice versa, with a focus on frontal and temporal regions including the insula and superior temporal lobe. CPM reveals the predictive value of the structural connectome for CM and current social support. Both constructs are inversely associated with connectivity strength in several brain tracts. While this underlines the interconnectedness of these experiences, it suggests social support acts as a protective factor following adverse childhood experiences, compensating for brain network alterations. Future longitudinal studies should focus on putative moderating mechanisms buffering these adverse experiences.
Asunto(s)
Maltrato a los Niños , Conectoma , Pruebas Psicológicas , Autoinforme , Sustancia Blanca , Adulto , Humanos , Niño , Conectoma/métodos , Imagen por Resonancia Magnética , EncéfaloRESUMEN
BACKGROUND: Patients with bipolar disorder (BD) show reduced fractional anisotropy (FA) compared to patients with major depressive disorder (MDD). Little is known about whether these differences are mood state-independent or influenced by acute symptom severity. Therefore, the aim of this study was (1) to replicate abnormalities in white matter microstructure in BD v. MDD and (2) to investigate whether these vary across depressed, euthymic, and manic mood. METHODS: In this cross-sectional diffusion tensor imaging study, n = 136 patients with BD were compared to age- and sex-matched MDD patients and healthy controls (HC) (n = 136 each). Differences in FA were investigated using tract-based spatial statistics. Using interaction models, the influence of acute symptom severity and mood state on the differences between patient groups were tested. RESULTS: Analyses revealed a main effect of diagnosis on FA across all three groups (ptfce-FWE = 0.003). BD patients showed reduced FA compared to both MDD (ptfce-FWE = 0.005) and HC (ptfce-FWE < 0.001) in large bilateral clusters. These consisted of several white matter tracts previously described in the literature, including commissural, association, and projection tracts. There were no significant interaction effects between diagnosis and symptom severity or mood state (all ptfce-FWE > 0.704). CONCLUSIONS: Results indicated that the difference between BD and MDD was independent of depressive and manic symptom severity and mood state. Disruptions in white matter microstructure in BD might be a trait effect of the disorder. The potential of FA values to be used as a biomarker to differentiate BD from MDD should be further addressed in future studies using longitudinal designs.
Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Sustancia Blanca , Humanos , Trastorno Bipolar/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Anisotropía , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , ManíaRESUMEN
BACKGROUND: Major depressive disorder (MDD) has been associated with alterations in brain white matter (WM) microstructure. However, diffusion tensor imaging studies in biological relatives have presented contradicting results on WM alterations and their potential as biomarkers for vulnerability or resilience. To shed more light on associations between WM microstructure and resilience to familial risk, analyses including both healthy and depressed relatives of MDD patients are needed. METHODS: In a 2 (MDD v. healthy controls, HC) × 2 (familial risk yes v. no) design, we investigated fractional anisotropy (FA) via tract-based spatial statistics in a large well-characterised adult sample (N = 528), with additional controls for childhood maltreatment, a potentially confounding proxy for environmental risk. RESULTS: Analyses revealed a significant main effect of diagnosis on FA in the forceps minor and the left superior longitudinal fasciculus (ptfce-FWE = 0.009). Furthermore, a significant interaction of diagnosis with familial risk emerged (ptfce-FWE = 0.036) Post-hoc pairwise comparisons showed significantly higher FA, mainly in the forceps minor and right inferior fronto-occipital fasciculus, in HC with as compared to HC without familial risk (ptfce-FWE < 0.001), whereas familial risk played no role in MDD patients (ptfce-FWE = 0.797). Adding childhood maltreatment as a covariate, the interaction effect remained stable. CONCLUSIONS: We found widespread increased FA in HC with familial risk for MDD as compared to a HC low-risk sample. The significant effect of risk on FA was present only in HC, but not in the MDD sample. These alterations might reflect compensatory neural mechanisms in healthy adults at risk for MDD potentially associated with resilience.
Asunto(s)
Trastorno Depresivo Mayor , Sustancia Blanca , Adulto , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Depresión , Predisposición Genética a la Enfermedad , AnisotropíaRESUMEN
BACKGROUND: Cognitive dysfunction and brain structural connectivity alterations have been observed in major depressive disorder (MDD). However, little is known about their interrelation. The present study follows a network approach to evaluate alterations in cognition-related brain structural networks. METHODS: Cognitive performance of n = 805 healthy and n = 679 acutely depressed or remitted individuals was assessed using 14 cognitive tests aggregated into cognitive factors. The structural connectome was reconstructed from structural and diffusion-weighted magnetic resonance imaging. Associations between global connectivity strength and cognitive factors were established using linear regressions. Network-based statistics were applied to identify subnetworks of connections underlying these global-level associations. In exploratory analyses, effects of depression were assessed by evaluating remission status-related group differences in subnetwork-specific connectivity. Partial correlations were employed to directly test the complete triad of cognitive factors, depressive symptom severity, and subnetwork-specific connectivity strength. RESULTS: All cognitive factors were associated with global connectivity strength. For each cognitive factor, network-based statistics identified a subnetwork of connections, revealing, for example, a subnetwork positively associated with processing speed. Within that subnetwork, acutely depressed patients showed significantly reduced connectivity strength compared to healthy controls. Moreover, connectivity strength in that subnetwork was associated to current depressive symptom severity independent of the previous disease course. CONCLUSIONS: Our study is the first to identify cognition-related structural brain networks in MDD patients, thereby revealing associations between cognitive deficits, depressive symptoms, and reduced structural connectivity. This supports the hypothesis that structural connectome alterations may mediate the association of cognitive deficits and depression severity.
RESUMEN
BACKGROUND: Childhood maltreatment (CM) represents a potent risk factor for major depressive disorder (MDD), including poorer treatment response. Altered resting-state connectivity in the fronto-limbic system has been reported in maltreated individuals. However, previous results in smaller samples differ largely regarding localization and direction of effects. METHODS: We included healthy and depressed samples [n = 624 participants with MDD; n = 701 healthy control (HC) participants] that underwent resting-state functional MRI measurements and provided retrospective self-reports of maltreatment using the Childhood Trauma Questionnaire. A-priori defined regions of interest [ROI; amygdala, hippocampus, anterior cingulate cortex (ACC)] were used to calculate seed-to-voxel connectivities. RESULTS: No significant associations between maltreatment and resting-state connectivity of any ROI were found across MDD and HC participants and no interaction effect with diagnosis became significant. Investigating MDD patients only yielded maltreatment-associated increased connectivity between the amygdala and dorsolateral frontal areas [pFDR < 0.001; η2partial = 0.050; 95%-CI (0.023-0.085)]. This effect was robust across various sensitivity analyses and was associated with concurrent and previous symptom severity. Particularly strong amygdala-frontal associations with maltreatment were observed in acutely depressed individuals [n = 264; pFDR < 0.001; η2partial = 0.091; 95%-CI (0.038-0.166)). Weaker evidence - not surviving correction for multiple ROI analyses - was found for altered supracallosal ACC connectivity in HC individuals associated with maltreatment. CONCLUSIONS: The majority of previous resting-state connectivity correlates of CM could not be replicated in this large-scale study. The strongest evidence was found for clinically relevant maltreatment associations with altered adult amygdala-dorsolateral frontal connectivity in depression. Future studies should explore the relevance of this pathway for a maltreated subgroup of MDD patients.
Asunto(s)
Maltrato a los Niños , Trastorno Depresivo Mayor , Humanos , Adulto , Niño , Trastorno Depresivo Mayor/diagnóstico por imagen , Depresión , Estudios Retrospectivos , Sistema Límbico , Imagen por Resonancia Magnética/métodosRESUMEN
Cognitive deficits are central attendant symptoms of major depressive disorder (MDD) with a crucial impact in patients' everyday life. Thus, it is of particular clinical importance to understand their pathophysiology. The aim of this study was to investigate a possible relationship between brain structure and cognitive performance in MDD patients in a well-characterized sample. N = 1007 participants (NMDD = 482, healthy controls (HC): NHC = 525) were selected from the FOR2107 cohort for this diffusion-tensor imaging study employing tract-based spatial statistics. We conducted a principal component analysis (PCA) to reduce neuropsychological test results, and to discover underlying factors of cognitive performance in MDD patients. We tested the association between fractional anisotropy (FA) and diagnosis (MDD vs. HC) and cognitive performance factors. The PCA yielded a single general cognitive performance factor that differed significantly between MDD patients and HC (P < 0.001). We found a significant main effect of the general cognitive performance factor in FA (Ptfce-FWE = 0.002) in a large bilateral cluster consisting of widespread frontotemporal-association fibers. In MDD patients this effect was independent of medication intake, the presence of comorbid diagnoses, the number of previous hospitalizations, and depressive symptomatology. This study provides robust evidence that white matter disturbances and cognitive performance seem to be associated. This association was independent of diagnosis, though MDD patients show more pronounced deficits and lower FA values in the global white matter fiber structure. This suggests a more general, rather than the depression-specific neurological basis for cognitive deficits.
Asunto(s)
Trastorno Depresivo Mayor , Sustancia Blanca , Anisotropía , Encéfalo , Cognición , Imagen de Difusión Tensora/métodos , HumanosRESUMEN
Major Depressive Disorder (MDD) often is associated with significant cognitive dysfunction. We conducted a meta-analysis of genome-wide interaction of MDD and cognitive function using data from four large European cohorts in a total of 3510 MDD cases and 6057 controls. In addition, we conducted analyses using polygenic risk scores (PRS) based on data from the Psychiatric Genomics Consortium (PGC) on the traits of MDD, Bipolar disorder (BD), Schizophrenia (SCZ), and mood instability (MIN). Functional exploration contained gene expression analyses and Ingenuity Pathway Analysis (IPA®). We identified a set of significantly interacting single nucleotide polymorphisms (SNPs) between MDD and the genome-wide association study (GWAS) of cognitive domains of executive function, processing speed, and global cognition. Several of these SNPs are located in genes expressed in brain, with important roles such as neuronal development (REST), oligodendrocyte maturation (TNFRSF21), and myelination (ARFGEF1). IPA® identified a set of core genes from our dataset that mapped to a wide range of canonical pathways and biological functions (MPO, FOXO1, PDE3A, TSLP, NLRP9, ADAMTS5, ROBO1, REST). Furthermore, IPA® identified upstream regulator molecules and causal networks impacting on the expression of dataset genes, providing a genetic basis for further clinical exploration (vitamin D receptor, beta-estradiol, tadalafil). PRS of MIN and meta-PRS of MDD, MIN and SCZ were significantly associated with all cognitive domains. Our results suggest several genes involved in physiological processes for the development and maintenance of cognition in MDD, as well as potential novel therapeutic agents that could be explored in patients with MDD associated cognitive dysfunction.
Asunto(s)
Trastorno Depresivo Mayor , Cognición , Depresión , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/psicología , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Herencia Multifactorial/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , Receptores InmunológicosRESUMEN
Epidemiological studies have shown that gestational age and birth weight are linked to cognitive performance in adults. On a neurobiological level, this effect is hypothesized to be related to cortical gyrification, which is determined primarily during fetal development. The relationships between gestational age, gyrification and specific cognitive abilities in adults are still poorly understood. In 542 healthy participants, gyrification indices were calculated from structural magnetic resonance imaging T1 data at 3 T using CAT12. After applying a battery of neuropsychological tests, neuropsychological factors were extracted with a factor analysis. We conducted regressions to test associations between gyrification and gestational age as well as birth weight. Moderation analyses explored the relationships between gestational age, gyrification and neuropsychological factors. Gestational age is significantly positively associated with cortical folding in the left supramarginal, bilaterally in the superior frontal and the lingual cortex. We extracted two neuropsychological factors that describe language abilities and working memory/attention. The association between gyrification in the left superior frontal gyrus and working memory/attention was moderated by gestational age. Further, the association between gyrification in the left supramarginal cortex and both, working memory/attention as well as language, were moderated by gestational age. Gyrification is associated with gestational age and related to specific neuropsychological outcomes in healthy adulthood. Implications from these findings for the cortical neurodevelopment of cognitive domains and mental health are discussed.
Asunto(s)
Corteza Cerebral , Corteza Prefrontal , Humanos , Adulto , Edad Gestacional , Peso al Nacer , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Cognición , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Relapses in major depression are frequent and are associated with a high burden of disease. Although short-term studies suggest a normalisation of depression-associated brain functional alterations directly after treatment, long-term investigations are sparse. AIMS: To examine brain function during negative emotion processing in association with course of illness over a 2-year span. METHOD: In this prospective case-control study, 72 in-patients with current depression and 42 healthy controls were investigated during a negative emotional face processing paradigm, at baseline and after 2 years. According to their course of illness during the study interval, patients were divided into subgroups (n = 25 no-relapse, n = 47 relapse). The differential changes in brain activity were investigated by a group × time analysis of covariance for the amygdala, hippocampus, insula and at whole-brain level. RESULTS: A significant relapse × time interaction emerged within the amygdala (PTFCE-FWE = 0.011), insula (PTFCE-FWE = 0.001) and at the whole-brain level mainly in the temporal and prefrontal cortex (PTFCE-FWE = 0.027), resulting from activity increases within the no-relapse group, whereas in the relapse group, activity decreased during the study interval. At baseline, the no-relapse group showed amygdala, hippocampus and insula hypoactivity compared with healthy controls and the relapse group. CONCLUSIONS: This study reveals course of illness-associated activity changes in emotion processing areas. Patients in full remission show a normalisation of their baseline hypo-responsiveness to the activation level of healthy controls after 2 years. Brain function during emotion processing could further serve as a potential predictive marker for future relapse.
Asunto(s)
Depresión , Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios de Casos y Controles , Trastorno Depresivo Mayor/psicología , Emociones/fisiología , Humanos , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Eighty percent of all patients suffering from major depressive disorder (MDD) relapse at least once in their lifetime. Thus, understanding the neurobiological underpinnings of the course of MDD is of utmost importance. A detrimental course of illness in MDD was most consistently associated with superior longitudinal fasciculus (SLF) fiber integrity. As similar associations were, however, found between SLF fiber integrity and acute symptomatology, this study attempts to disentangle associations attributed to current depression from long-term course of illness. METHODS: A total of 531 patients suffering from acute (N = 250) or remitted (N = 281) MDD from the FOR2107-cohort were analyzed in this cross-sectional study using tract-based spatial statistics for diffusion tensor imaging. First, the effects of disease state (acute v. remitted), current symptom severity (BDI-score) and course of illness (number of hospitalizations) on fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity were analyzed separately. Second, disease state and BDI-scores were analyzed in conjunction with the number of hospitalizations to disentangle their effects. RESULTS: Disease state (pFWE < 0.042) and number of hospitalizations (pFWE< 0.032) were associated with decreased FA and increased MD and RD in the bilateral SLF. A trend was found for the BDI-score (pFWE > 0.067). When analyzed simultaneously only the effect of course of illness remained significant (pFWE < 0.040) mapping to the right SLF. CONCLUSIONS: Decreased FA and increased MD and RD values in the SLF are associated with more hospitalizations when controlling for current psychopathology. SLF fiber integrity could reflect cumulative illness burden at a neurobiological level and should be targeted in future longitudinal analyses.
Asunto(s)
Trastorno Depresivo Mayor , Sustancia Blanca , Humanos , Trastorno Depresivo Mayor/patología , Sustancia Blanca/patología , Imagen de Difusión Tensora/métodos , Estudios Transversales , Anisotropía , Encéfalo/patologíaRESUMEN
The metabolic serum marker HbA1c has been associated with both impaired cognitive performance and altered white matter integrity in patients suffering from diabetes mellitus. However, it remains unclear if higher levels of HbA1c might also affect brain structure and function in healthy subjects. With the present study we therefore aimed to investigate the relationship between HbA1c levels and cognitive performance as well as white matter microstructure in healthy, young adults. To address this question, associations between HbA1c and cognitive measures (NIH Cognition Toolbox) as well as DTI-derived imaging measures of white matter microstructure were investigated in a publicly available sample of healthy, young adults as part of the Humane Connectome Project (n = 1206, mean age = 28.8 years, 45.5% male). We found that HbA1c levels (range 4.1-6.3%) were significantly inversely correlated with measures of cognitive performance. Higher HbA1c levels were associated with significant and widespread reductions in fractional anisotropy (FA) controlling for age, sex, body mass index, ethnicity, and education. FA reductions were furthermore found to covary with measures of cognitive performance. The same pattern of results could be observed in analyses restricted to participants with HBA1c levels below 5.7%. The present study demonstrates that low-grade HbA1c variation below diagnostic threshold for diabetes is related to both cognitive performance and white matter integrity in healthy, young adults. These findings highlight the detrimental impact of metabolic risk factors on brain physiology and underscore the importance of intensified preventive measures independent of the currently applied diagnostic HbA1c cutoff scores.
Asunto(s)
Sustancia Blanca , Adulto , Anisotropía , Encéfalo/diagnóstico por imagen , Cognición , Imagen de Difusión Tensora , Femenino , Hemoglobina Glucada , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen , Adulto JovenRESUMEN
Psychotic disorders are common and disabling mental conditions. The relative importance of immune-related mechanisms in psychotic disorders remains subject of debate. Here, we present a large-scale retrospective study of blood and cerebrospinal fluid (CSF) immune cell profiles of psychosis spectrum patients. We performed basic CSF analysis and multi-dimensional flow cytometry of CSF and blood cells from 59 patients with primary psychotic disorders (F20, F22, F23, and F25) in comparison to inflammatory (49 RRMS and 16 NMDARE patients) and non-inflammatory controls (52 IIH patients). We replicated the known expansion of monocytes in the blood of psychosis spectrum patients, that we identified to preferentially affect classical monocytes. In the CSF, we found a relative shift from lymphocytes to monocytes, increased protein levels, and evidence of blood-brain barrier disruption in psychosis. In fact, these CSF features confidently distinguished autoimmune encephalitis from psychosis despite similar (initial) clinical features. We then constructed machine learning models incorporating blood and CSF parameters and demonstrated their superior ability to differentiate psychosis from non-inflammatory controls compared to individual parameters. Multi-dimensional and multi-compartment immune cell signatures can thus support the diagnosis of psychosis spectrum disorders with the potential to accelerate diagnosis and initiation of therapy.
Asunto(s)
Encefalitis , Trastornos Psicóticos , Líquido Cefalorraquídeo , Diagnóstico Diferencial , Citometría de Flujo , Humanos , Trastornos Psicóticos/líquido cefalorraquídeo , Estudios RetrospectivosRESUMEN
Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
Asunto(s)
Trastorno Bipolar , Amígdala del Cerebelo , Índice de Masa Corporal , Encéfalo , Humanos , Imagen por Resonancia Magnética/métodosRESUMEN
AIMS: Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry. METHODS: We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles. RESULTS: We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex. CONCLUSIONS: We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD.